首页> 外文期刊>Journal of supercomputing >An adaptive breadth-first search algorithm on integrated architectures
【24h】

An adaptive breadth-first search algorithm on integrated architectures

机译:集成架构上的自适应广度优先搜索算法

获取原文
获取原文并翻译 | 示例

摘要

In the big data era, graph applications are becoming increasingly important for data analysis. Breadth-first search (BFS) is one of the most representative algorithms; therefore, accelerating BFS using graphics processing units (GPUs) is a hot research topic. However, due to their random data access pattern, it is difficult to take full advantage of the power of GPUs. Recently, hardware designers have integrated CPUs and GPUs on the same chip, allowing both devices to share physical memory, which provides the convenience of switching between CPUs and GPUs with little cost. BFS processing can be divided into several levels, and various traversal orders can be used at each level. Using different traversal orders on different devices (CPUs or GPUs) results in diverse performances. Thus, the challenge in using BFS on integrated architectures is how to select the traversal order and the device for each level. Previous works have failed to address this problem effectively. In this study, we propose an adaptive performance model that automatically finds a suitable traversal order and device for each level. We evaluated our method on Graph500, where it not only shows the best energy efficiency but also achieves a giga-traversed edges per second (GTEPS) performance of approximately 2.1 GTEPS, which is a speed improvement over the state-of-the-art BFS on integrated architectures.
机译:在大数据时代,图形应用对于数据分析变得越来越重要。广度优先搜索(BFS)是最具代表性的算法之一;因此,使用图形处理单元(GPU)加速BFS是一个热门研究课题。但是,由于它们的随机数据访问模式,难以充分利用GPU的功能。最近,硬件设计人员已将CPU和GPU集成在同一芯片上,从而允许这两个设备共享物理内存,从而以很少的成本提供了在CPU和GPU之间进行切换的便利。 BFS处理可以分为几个级别,并且每个级别可以使用各种遍历顺序。在不同的设备(CPU或GPU)上使用不同的遍历顺序会产生不同的性能。因此,在集成体系结构上使用BFS的挑战在于如何为每个级别选择遍历顺序和设备。先前的工作未能有效解决此问题。在这项研究中,我们提出了一种自适应性能模型,该模型可以自动为每个级别找到合适的遍历顺序和设备。我们在Graph500上评估了我们的方法,该方法不仅显示出最佳的能源效率,而且还实现了大约2.1 GTEPS的每秒千兆遍历边沿(GTEPS)性能,这是对最新BFS的速度改进在集成架构上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号