首页> 外文期刊>Journal of supercomputing >Resource-efficient utilization of CPU/GPU-based heterogeneous supercomputers for Bayesian phylogenetic inference
【24h】

Resource-efficient utilization of CPU/GPU-based heterogeneous supercomputers for Bayesian phylogenetic inference

机译:贝叶斯系统发生推理的基于CPU / GPU的异构超级计算机的资源有效利用

获取原文
获取原文并翻译 | 示例

摘要

Bayesian inference is one of the most important methods for estimating phylogenetic trees in bioinformatics. Due to the potentially huge computational requirements, several parallel algorithms of Bayesian inference have been implemented to run on CPU-based clusters, multicore CPUs, or small clusters of CPUs and GPUs. To the best of our knowledge, however, none of the existing methods is able to simultaneously and fully utilize both CPUs and GPUs for the computations, leaving idle either the CPU part or the GPU part of modern heterogeneous supercomputers. Aiming at an optimized utilization of heterogeneous computing resources, which is a promising hardware architecture for future bioinformatics applications, we present a new hybrid parallel algorithm and implementation of Bayesian phylogenetic infer-ence, which combines MPI, OpenMP, and CUDA programming. The novelty of our algorithm, denoted as oMC~3, is its ability of using CPU cores simultaneously with GPUs for the computations, while ensuring a fair work division between the two types of hardware components. We have implemented oMC~3 based on MrBayes, which is one of the most popular software packages for Bayesian phylogenetic inference. Numerical experiments show that oMC~3 obtains 2.5 × speedup over nMC~3, which is a cutting-edge GPU implementation of MrBayes, on a single server consisting of two GPUs and sixteen CPU cores. Moreover, oMC~3 scales nicely when 128 GPUs and 1536 CPU cores are in use.
机译:贝叶斯推理是估计生物信息学系统树的最重要方法之一。由于潜在的巨大计算需求,已经实现了多种贝叶斯推理并行算法,以在基于CPU的群集,多核CPU或小型CPU和GPU群集上运行。据我们所知,现有方法均无法同时,充分利用CPU和GPU进行计算,而使现代异构超级计算机的CPU部分或GPU部分处于闲置状态。针对异构计算资源的优化利用,这是未来生物信息学应用程序的有希望的硬件体系结构,我们提出了一种新的混合并行算法和贝叶斯系统发生推理的实现,该算法结合了MPI,OpenMP和CUDA编程。我们算法的新颖性(称为oMC〜3)是它能够同时使用CPU内核和GPU进行计算,同时确保两种类型的硬件组件之间的公平工作分配。我们已经基于MrBayes实现了oMC〜3,这是用于贝叶斯系统发育推断的最受欢迎的软件包之一。数值实验表明,在由两个GPU和16个CPU内核组成的单个服务器上,oMC〜3的速度比nMC〜3快2.5倍,后者是MrBayes的尖端GPU实现。此外,当使用128个GPU和1536个CPU内核时,oMC〜3可以很好地扩展。

著录项

  • 来源
    《Journal of supercomputing》 |2013年第1期|364-380|共17页
  • 作者单位

    School of Computer, National University of Defense Technology, 410073 Changsha, P.R. China;

    School of Computer, National University of Defense Technology, 410073 Changsha, P.R. China;

    School of Computer, National University of Defense Technology, 410073 Changsha, P.R. China;

    Simula Research Laboratory, P.O. Box 134. 1325 Lysaker, Norway,Department of Informatics, University of Oslo. P.O. Box 1080. Blindern, 0316 Oslo, Norway;

    School of Computer, National University of Defense Technology, 410073 Changsha, P.R. China;

    School of Computer, National University of Defense Technology, 410073 Changsha, P.R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bayesian inference; CPU/GPU-based heterogeneous; Supercomputer; Hybrid programming; Resource-efficient utilization;

    机译:贝叶斯推理;基于CPU / GPU的异构超级计算机混合编程;资源有效利用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号