首页> 外文期刊>Journal of supercomputing >Parallel data mining techniques on Graphics Processing Unit with Compute Unified Device Architecture (CUDA)
【24h】

Parallel data mining techniques on Graphics Processing Unit with Compute Unified Device Architecture (CUDA)

机译:具有Compute Unified Device Architecture(CUDA)的图形处理单元上的并行数据挖掘技术

获取原文
获取原文并翻译 | 示例

摘要

Recent development in Graphics Processing Units (GPUs) has enabled inexpensive high performance computing for general-purpose applications. Compute Unified Device Architecture (CUDA) programming model provides the programmers adequate C language like APIs to better exploit the parallel power of the GPU. Data mining is widely used and has significant applications in various domains. However, current data mining toolkits cannot meet the requirement of applications with large-scale databases in terms of speed. In this paper, we propose three techniques to speedup fundamental problems in data mining algorithms on the CUDA platform: scalable thread scheduling scheme for irregular pattern, parallel distributed top-k scheme, and parallel high dimension reduction scheme. They play a key role in our CUDA-based implementation of three representative data mining algorithms, CU-Apriori, CU-KNN, and CU-K-means. These parallel implementations outperform the other state-of-the-art implementations significantly on a HP xw8600 workstation with a Tesla C 1060 GPU and a Core-quad Intel Xeon CPU. Our results have shown that GPU + CUDA parallel architecture is feasible and promising for data mining applications.
机译:图形处理单元(GPU)的最新发展为通用应用程序实现了廉价的高性能计算。计算统一设备架构(CUDA)编程模型为程序员提供了足够的C语言(如API),以更好地利用GPU的并行功能。数据挖掘被广泛使用,并且在各个领域中都有重要的应用。但是,当前的数据挖掘工具包在速度方面无法满足具有大型数据库的应用程序的需求。在本文中,我们提出了三种技术来加速CUDA平台上的数据挖掘算法中的基本问题:不规则模式的可伸缩线程调度方案,并行分布式top-k方案和并行高维缩减方案。它们在我们基于CUDA的三个代表性数据挖掘算法(CU-Apriori,CU-KNN和CU-K-means)的实现中起着关键作用。在带有Tesla C 1060 GPU和酷睿四核Intel Xeon CPU的HP xw8600工作站上,这些并行实现大大优于其他最新实现。我们的结果表明,GPU + CUDA并行体系结构对于数据挖掘应用程序是可行的并且很有前途。

著录项

  • 来源
    《Journal of supercomputing》 |2013年第3期|942-967|共26页
  • 作者单位

    School of Information Science and Engineering, Graduate University of Chinese Academy of Sciences, Beijing, China;

    Agilent Technologies Co. Ltd., Beijing, China;

    School of Information Science and Engineering, Graduate University of Chinese Academy of Sciences, Beijing, China,Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing,China;

    School of Information Science and Engineering, Graduate University of Chinese Academy of Sciences, Beijing, China;

    School of Information Science and Engineering, Graduate University of Chinese Academy of Sciences, Beijing, China;

    Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing,China University of Nebraska at Omaha, Omaha, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Parallel computing; CUDA; Data mining; Classification; Clustering Association rules mining;

    机译:并行计算CUDA;数据挖掘;分类;集群关联规则挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号