首页> 外文期刊>Journal of supercomputing >A workload-driven approach to database query processing in the cloud
【24h】

A workload-driven approach to database query processing in the cloud

机译:工作负载驱动的云中数据库查询处理方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with data provisioning services (information search, retrieval, storage, etc.) dealing with a large and heterogeneous information repository. Increasingly, this class of services is being hosted and delivered through Cloud infrastructures. Although such systems are becoming popular, existing resource management methods (e.g. load-balancing techniques) do not consider workload patterns nor do they perform well when subjected to non-uniformly distributed datasets. If these problems can be solved, this class of services can be made to operate in more a scalable, efficient, and reliable manner. The main contribution of this paper is a approach that combines proprietary cloud-based load balancing techniques and density-based partitioning for efficient range query processing across relational database-as-a-service in cloud computing environments. The study is conducted over a real-world data provisioning service that manages a large historical news database from Thomson Reuters. The proposed approach has been implemented and tested as a multi-tier web application suite consisting of load-balancing, application, and database layers. We have validated our approach by conducting a set of rigorous performance evaluation experiments using the Amazon EC2 infrastructure. The results prove that augmenting a cloud-based load-balancing service (e.g. Amazon Elastic Load Balancer) with workload characterization intelligence (density and distribution of data; composition of queries) offers significant benefits with regards to the overall system's performance (i.e. query latency and database service throughput).
机译:本文涉及处理大型和异构信息存储库的数据供应服务(信息搜索,检索,存储等)。越来越多的服务通过云基础架构托管和交付。尽管这样的系统变得越来越流行,但是现有的资源管理方法(例如,负载平衡技术)没有考虑工作负荷模式,或者当受到非均匀分布的数据集的影响时它们不能很好地执行。如果可以解决这些问题,则可以使此类服务以更可伸缩,高效和可靠的方式运行。本文的主要贡献是一种结合了专有的基于云的负载平衡技术和基于密度的分区的方法,以便在云计算环境中跨关系数据库即服务进行有效的范围查询处理。这项研究是通过现实数据提供服务进行的,该服务管理着汤森路透的一个大型历史新闻数据库。所提出的方法已作为包含负载平衡,应用程序和数据库层的多层Web应用程序套件实现和测试。我们已经通过使用Amazon EC2基础架构进行了一系列严格的性能评估实验来验证了我们的方法。结果证明,通过工作负载特征化智能(数据的密度和分布;查询的组成)来增强基于云的负载平衡服务(例如Amazon Elastic Load Balancer),可以在整体系统性能(即查询延迟和数据库服务吞吐量)。

著录项

  • 来源
    《Journal of supercomputing》 |2013年第3期|722-736|共15页
  • 作者单位

    School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia;

    Information Engineering Laboratory. CSIRO ICT Center, Building 108, Australian National University, Canberra, Australia;

    School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    range query processing; load balancing; data density; cloud computing;

    机译:范围查询处理;负载均衡;数据密度云计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号