首页> 外文期刊>Journal of supercomputing >Multiperiod robust optimization for proactive resource provisioning in virtualized data centers
【24h】

Multiperiod robust optimization for proactive resource provisioning in virtualized data centers

机译:多周期的鲁棒性优化,可在虚拟化数据中心中主动配置资源

获取原文
获取原文并翻译 | 示例

摘要

Energy management has become a significant concern in data centers for reducing operational costs. Using virtualization allows server consolidation, which increases server utilization and reduces energy consumption by turning off idle servers. This needs to consider the power state change overhead. In this paper, we investigate proactive resource provisioning in short-term planning for performance and energy management. To implement short-term planning based on workload prediction, this requires dealing with high fluctuations that are inaccurately predictable by using single value prediction. Unlike long-term planning, short-term planning can not depend on periodical patterns. Thus, we propose an adaptive range-based prediction algorithm instead of a single value. We implement and extensively evaluate the proposed range-based prediction algorithm with different days of real workload. Then, we exploit the range prediction for implementing proactive provisioning using robust optimization taking into consideration uncertainty of the demand. We formulate proactive VM provisioning as a multiperiod robust optimization problem. To evaluate the proposed approach, we use several experimental setups and different days of real workload. We use two metrics: energy savings and robustness for ranking the efficiency of different scenarios. Our approach mitigates undesirable changes in the power state of servers. This enhances servers' availability for accommodating new VMs, its robustness against uncertainty in workload change, and its reliability against a system failure due to frequent power state changes.
机译:能源管理已成为降低数据中心运营成本的重要问题。使用虚拟化可以实现服务器整合,从而通过关闭空闲服务器来提高服务器利用率并降低能耗。这需要考虑电源状态更改开销。在本文中,我们研究了用于性能和能源管理的短期计划中的主动资源配置。为了基于工作量预测来实施短期计划,这需要处理使用单值预测无法准确预测的高波动。与长期计划不同,短期计划不能依赖定期模式。因此,我们提出了一种基于范围的自适应预测算法,而不是单个值。我们实施并广泛评估了建议的基于范围的预测算法,该算法具有不同的实际工作天数。然后,在考虑需求不确定性的情况下,我们利用范围预测来使用健壮的优化来实施主动配置。我们将主动式虚拟机置备公式化为一个多周期的鲁棒优化问题。为了评估建议的方法,我们使用了几种实验设置和不同的实际工作日。我们使用两个指标:节能和稳健性来对不同方案的效率进行排名。我们的方法减轻了服务器电源状态的不良变化。这提高了服务器容纳新VM的可用性,针对工作负载变化的不确定性的鲁棒性以及针对由于频繁的电源状态变化而导致的系统故障的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号