首页> 外文期刊>Journal of supercomputing >GPU-enabled back-propagation artificial neural network for digit recognition in parallel
【24h】

GPU-enabled back-propagation artificial neural network for digit recognition in parallel

机译:支持GPU的反向传播人工神经网络用于并行数字识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we show that the GPU (graphics processing unit) can be used not only for processing graphics, but also for high speed computing. We provide a comparison between the times taken on the CPU and GPU to perform the training and testing of a back-propagation artificial neural network. We implemented two neural networks for recognizing handwritten digits; one consists of serial code executed on the CPU, while the other is a GPU-based version of the same system which executes in parallel. As an experiment for performance evaluation, a system for neural network training on the GPU is developed to reduce training time. The programming environment that the system is based on is CUDA which stands for compute unified device architecture, which allows a programmer to write code that will run on an NVIDIA GPU card. Our results over an experiment of digital image recognition using neural network confirm the speed-up advantages by tapping on the resources of GPU. Our proposed model has an advantage of simplicity, while it shows on par performance with the state-of-the-arts algorithms.
机译:在本文中,我们证明了GPU(图形处理单元)不仅可以用于处理图形,还可以用于高速计算。我们提供CPU和GPU执行反向传播人工神经网络训练和测试所用时间之间的比较。我们实现了两个神经网络来识别手写数字。一个是由在CPU上执行的串行代码组成,而另一个是并行执行的同一系统的基于GPU的版本。作为性能评估的实验,开发了用于在GPU上进行神经网络训练的系统,以减少训练时间。系统所基于的编程环境是CUDA,代表计算统一设备体系结构,该体系结构允许程序员编写将在NVIDIA GPU卡上运行的代码。我们使用神经网络进行数字图像识别实验的结果通过利用GPU资源证实了加速优势。我们提出的模型具有简单性的优势,同时可以与最新算法相媲美。

著录项

  • 来源
    《Journal of supercomputing》 |2016年第10期|3868-3886|共19页
  • 作者单位

    Univ Macau, Dept Comp & Informat Sci, Zhuhai, Macau, Peoples R China;

    Univ Macau, Dept Comp & Informat Sci, Zhuhai, Macau, Peoples R China;

    Dongguk Univ, Dept Comp & Multimedia Engn, Seoul, South Korea;

    North China Univ Technol, Coll Informat Engn, Beijing, Peoples R China;

    Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia;

    Lakehead Univ, Dept Comp Sci, Thunder Bay, ON, Canada;

    Lakehead Univ, Dept Comp Sci, Thunder Bay, ON, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial neural networks; Parallel execution; NVIDIA; CUDA;

    机译:人工神经网络;并行执行;NVIDIA;CUDA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号