首页> 外文期刊>Journal of supercomputing >Critical data points-based unsupervised linear dimension reduction technology for science data
【24h】

Critical data points-based unsupervised linear dimension reduction technology for science data

机译:基于关键数据点的无监督线性降维技术

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in machine learning and data mining have led to powerful methods for the analysis and visualization of high dimensional data. This paper proposes an unsupervised linear dimension reduction algorithm named critical points preserving projection (CPPP). Selecting some key data points to represent the others has become more and more popular owing to its effectiveness and efficiency. Rather than considering all data points equally, the proposed algorithm just preserves both local neighborhood structure and global variance of critical data points. We explore a joint modification of locality preserving projection and principal component analysis to achieve these objectives. Experimental results on the UCI data sets show its good performance on pattern classification.
机译:机器学习和数据挖掘的最新进展导致了用于分析和可视化高维数据的强大方法。本文提出了一种无监督的线性降维算法,称为临界点保留投影(CPPP)。由于其有效性和效率,选择一些关键数据点来代表其他数据点已变得越来越受欢迎。所提出的算法没有同时考虑所有数据点,而只是保留了关键数据点的局部邻域结构和全局方差。我们探索联合修改局部性保留投影和主成分分析以实现这些目标。在UCI数据集上的实验结果显示了其在模式分类方面的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号