首页> 外文期刊>Journal of supercomputing >Locality-aware data replication in the last-level cache for large scale multicores
【24h】

Locality-aware data replication in the last-level cache for large scale multicores

机译:大型多核的最后一级缓存中的本地感知数据复制

获取原文
获取原文并翻译 | 示例

摘要

Next generation large single-chip multicores will process massive data with varying degree of locality. Harnessing on-chip data locality to optimize the utilization of on-chip cache and network resources is of fundamental importance. We propose a locality-aware selective data replication protocol for the last-level cache (LLC). The goal is to lower memory access latency and energy by only replicating cache lines with high reuse in the LLC slice of the requesting core, while simultaneously keep the off-chip miss rate low. The approach relies on low-overhead yet highly accurate in hardware runtime cache line level classifier that only allows replication of cache lines with high reuse. Furthermore, a classifier captures the LLC pressure at the existing replica locations and adapts its replication decision accordingly. On a set of parallel benchmarks, the proposed protocol reduces overall energy by 14.7, 10.7, 10.5, and 16.7 % and completion time by 2.5, 6.5, 4.5, and 9.5 % when compared to the previously proposed Victim Replication, Adaptive Selective Replication, Reactive-NUCA, and Static-NUCA LLC management schemes. An efficient classifier implementation is evaluated with an overhead of 5.44 KB, which translates to only 1.58 % on top of the Static-NUCA baseline's cache related per-core storage.
机译:下一代大型单芯片多核将处理不同程度的本地化数据。利用片上数据的局部性来优化片上缓存和网络资源的利用率至关重要。我们为最后一级缓存(LLC)提出了一种可感知位置的选择性数据复制协议。目标是通过仅在请求内核的LLC切片中复制具有高复用率的高速缓存行来降低内存访问延迟和能耗,同时将片外未命中率保持在较低水平。该方法依赖于硬件运行时高速缓存行级别分类器中的开销低但高度准确的方法,该分类器仅允许高重复使用率的高速缓存行的复制。此外,分类器捕获现有副本位置处的LLC压力,并相应地调整其复制决策。与先前建议的受害者复制,自适应选择性复制,反应性相比,在一系列并行基准上,建议的协议将总能量减少了14.7%,10.7%,10.5和16.7%,完成时间减少了2.5%,6.5%,4.5和9.5%。 -NUCA和Static-NUCA LLC管理方案。评估有效的分类器实现的开销为5.44 KB,这仅占Static-NUCA基线与缓存相关的每核存储的1.58%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号