首页> 外文期刊>Journal of supercomputing >Classification and disease probability prediction via machine learning programming based on multi-GPU cluster MapReduce system
【24h】

Classification and disease probability prediction via machine learning programming based on multi-GPU cluster MapReduce system

机译:基于多GPU集群MapReduce系统的机器学习编程分类和疾病概率预测

获取原文
获取原文并翻译 | 示例

摘要

This paper described the nascent filed of big health data classification and disease probability prediction based on multi-GPU cluster MapReduce platform. Firstly, we presented a novel optimization-based multi-GPU cluster MapReduce system (gcMR) which is general purpose and suitable for processing big health data. Secondly, we proposed a new method IVP-SVM to solve the problem of big health data classification and disease probabilistic predictive inaccuracy. To illustrate the power and flexibility of gcMR platform for big health data, applications of a broad class of health big data using IVP-SVM on gcMR platform are described. Experimental results shown that gcMR platform yields an average computing efficiency on different health applications ranging from 1.8-to 13.5-folds by comparing gcMR with other Multi-GPU MapReduce platform. And an accuracy of the proposed IVP-SVM on different health applications is ranging from 85 to 100 %. This provides a motivation for pursuing the use of gcMR and IVP-SVM as a big health data analytical platform and tool, respectively.
机译:本文介绍了基于多GPU集群MapReduce平台的大健康数据分类和疾病概率预测的新生领域。首先,我们提出了一种新颖的基于优化的多GPU集群MapReduce系统(gcMR),该系统通用且适用于处理大型健康数据。其次,我们提出了一种新的方法IVP-SVM来解决大数据分类和疾病概率预测不准确的问题。为了说明gcMR平台对大健康数据的功能和灵活性,描述了在gcMR平台上使用IVP-SVM在广泛的健康大数据中的应用。实验结果表明,通过将gcMR与其他Multi-GPU MapReduce平台进行比较,gcMR平台在不同健康应用程序上的平均计算效率为1.8至13.5倍。所提出的IVP-SVM在不同健康应用中的准确性范围为85%至100%。这为分别将gcMR和IVP-SVM用作大型健康数据分析平台和工具提供了动力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号