首页> 外文期刊>Journal of structural geology >On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression
【24h】

On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression

机译:关于在结构地质中使用霍普金森分裂压力棒的应用:单轴压缩下Seeberger砂岩和Carrara大理石的高应变率变形

获取原文
获取原文并翻译 | 示例
           

摘要

There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural "geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10(+1) to 10(+2) s(-1) with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of similar to 18% could be observed at high strain rates of about 100 s(-1). DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s(-1). The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the light of dynamic deformation. 2017 Elsevier Ltd. All rights reserved.
机译:越来越多的证据表明,地震裂缝的传播速度快于围岩的剪切波速度。这种超剪切地震破裂的尖端区域内的应变率可能达到类似于冲击过程的变形条件,从而导致岩石粉碎。相对于准静态条件,高应变率下的脆性岩石的物理响应发生了巨大变化。岩石变硬,强度增加。岩石动力学行为及其应变相关性的量度是动态增加因子(DIF),它是动态抗压强度与准静态单轴抗压强度之比。为了通过实验研究高应变率状态下的变形,我们将剖分式霍普金森压力棒技术引入了结构“地质学界”,这是岩石和冲击工程师经常使用的一种方法。我们测量了均质,精细结构的应力-应变响应。关于切线模量和动态单轴抗压强度,单轴压缩下的粒状Seeberger砂岩和Carrara大理石在10(+1)到10(+2)s(-1)的应变速率下单轴压缩。 Seeberger砂岩和Carrara大理石在高应变率下的评估方法,以确定代表性变形率,结果表明Carrara大理石的应变率与速率有关,其中在约100的高应变率下平均可观察到18%的增加s(-1)。DIF达到2.2-2.4的因子。Seeberger砂岩在高应变速率下没有速率相关的线性应力-应变响应。 o在100 s(-1)的速率下约为1.6-1.7。动态行为的开始伴随着断裂模式的变化,从单一断裂到多处断裂,再到普遍粉碎,以增加变形速率。应根据动态变形仔细地重新考虑成地震剪切带及其相关的碎片尺寸谱。 2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号