首页> 外文期刊>Journal of structural engineering >Effective Flange Width Definition for Steel-Concrete Composite Bridge Girder
【24h】

Effective Flange Width Definition for Steel-Concrete Composite Bridge Girder

机译:钢-混凝土组合桥梁的有效翼缘宽度定义

获取原文
获取原文并翻译 | 示例
           

摘要

A composite section is made up of a concrete slab attached to a steel girder by means of shear connectors. Under positive bending moment, part of the slab will act as the flange of the girder resisting the longitudinal compression. When the spacing between the girders becomes large, it is evident that simple beam theory does not strictly apply because the longitudinal compressive stress in the flange will vary with distance from the girder web, the flange being more highly stressed over the web than in the extremities. This phenomenon is termed "shear lag." For design purposes, the effective flange width was introduced into national and international design specifications, whereby various effective flange width formulae were derived based on different analytical and experimental results. Accordingly, the effective flange width is generally less than unity, which is not realistic for a small girder spacing. In current effective of nee width for mulae, the theoretical derivation is based primarily on a planar stress distribution reflecting shear lag at the central fiber of the concrete. However, this simplification ignores the fact that stresses vary through the thickness. This through-thickness variation needs to be taken into account to produce a more viable representation of effective flange width criteria. Hence, the need for a different definition of the effective flange width becomes apparent. This paper proposes a different method for defining the effective flange width for the composite section, which can be utilized with the results obtained from the finite-element analysis. A three dimensional finite-element model of the composite bridge is verified, and a numerical example illustrating the proposed effective flange width definition is provided.
机译:复合部分由通过剪切连接器连接到钢梁的混凝土板组成。在正弯矩作用下,板的一部分将作为梁的凸缘抵抗纵向压缩。当大梁之间的间距变大时,很明显,简单的梁理论并不能严格应用,因为法兰中的纵向压缩应力会随着距大梁腹板的距离而变化,而法兰在腹板上的应力要比四肢更大。 。这种现象称为“剪切滞后”。出于设计目的,将有效法兰宽度引入了国家和国际设计规范,从而根据不同的分析和实验结果得出了各种有效的法兰宽度公式。因此,有效翼缘宽度通常小于一,这对于小梁间距而言是不现实的。在当前对子宽度有效的情况下,理论推导主要基于反映混凝土中心纤维处的剪切滞后的平面应力分布。但是,这种简化忽略了应力随厚度变化的事实。需要考虑厚度变化,以更有效地表示有效的法兰宽度标准。因此,明显需要不同的有效凸缘宽度定义。本文提出了另一种方法来定义复合截面的有效翼缘宽度,该方法可以与有限元分析获得的结果一起使用。验证了复合桥的三维有限元模型,并提供了一个数值示例,说明了所提出的有效翼缘宽度定义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号