首页> 外文期刊>Journal of Statistical Physics >Contractive Metrics for a Boltzmann Equation for Granular Gases: Diffusive Equilibria
【24h】

Contractive Metrics for a Boltzmann Equation for Granular Gases: Diffusive Equilibria

机译:颗粒气体的玻尔兹曼方程的压缩度量:扩散平衡

获取原文
获取原文并翻译 | 示例

摘要

We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t → ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial datum has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L 1-norm, as well as various Sobolev norms.
机译:我们通过一组概率测度中的适当度量的收缩性,量化了随机恒温器中(部分)非弹性粒子系统的长期行为。从此基本属性中得出存在性,唯一性,矩的有界性和稳态的规律性。证明了动力学模型的解在此距离上以度量度量的弱收敛性从t→∞呈指数收敛于该扩散平衡。然后,我们证明了解的Sobolev范数在时间上的统一边界,条件是初始基准在相应的Sobolev空间中具有有限范数。然后,使用插值不等式将这些结果组合起来,以获得强L 1范数以及各种Sobolev范数到扩散平衡的指数收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号