首页> 外文期刊>Journal of statistical computation and simulation >Sparse reduced-rank regression for multivariate varying-coefficient models
【24h】

Sparse reduced-rank regression for multivariate varying-coefficient models

机译:多变量变化系数模型的稀疏降低排名回归

获取原文
获取原文并翻译 | 示例

摘要

Varying-coefficient regression is a popular statistical tool that models the way a certain variable modulates the effect of other predictors nonlinearly. However, a majority of the VC regression models consider univariate responses; the case of multivariate responses have received relatively lesser attention. In this paper, we propose a robust multivariate varying-coefficient model based on rank loss that models the relationships among different responses via reduced-rank regression and penalized variable selection. Some asymptotic results are also established for the proposed methods. Using synthetic data, we investigate the finite sample performance and robustness properties of the estimator. We also illustrate our methodology by application to a real dataset on periodontal disease.
机译:变化系数回归是一种流行的统计工具,其模拟某种变量非线性地调制其他预测器的效果的方式。然而,大多数VC回归模型考虑了单变量的反应;多变量反应的情况得到了相对较小的关注。在本文中,我们提出了一种基于秩丢失的稳健多元变化系数模型,其通过减少排名回归和惩罚变量选择模型不同响应之间的关系。还为提出的方法建立了一些渐近结果。使用合成数据,我们研究了估计器的有限样本性能和鲁棒性属性。我们还通过应用于牙周病的真实数据集来说明我们的方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号