首页> 外文期刊>Journal of statistical computation and simulation >An unbalanced multidimensional latent effects-based logistic mixed model and GQL estimation for spatial binary data
【24h】

An unbalanced multidimensional latent effects-based logistic mixed model and GQL estimation for spatial binary data

机译:基于不平衡的多维潜在效果的逻辑混合模型和空间二进制数据的GQL估计

获取原文
获取原文并翻译 | 示例

摘要

Spatial correlation structure is the most essential tool in a spatial data analysis. However, the difficulty of modelling spatial correlations between two responses collected from two neighbouring locations is a challenge, when it is known that each of the responses may also be influenced by certain visible and/or invisible effects of other neighbouring locations. Further difficulties arise when one deals with spatial binary data as opposed to linear spatial data. In this paper, we resolve this correlation model issue for spatial binary data by using a mixed logits model approach where pair-wise correlations are computed by accommodating both within and between correlations for paired-responses. For inferences, we use the true correlation based generalized quasi-likelihood (GQL) approach. The asymptotic normality of the estimators of the main regression and random effects variance parameters are studied. The model and estimation methodology used are illustrated by a finite sample-based simulation study.
机译:空间相关结构是空间数据分析中最重要的工具。然而,在从两个相邻位置收集的两个响应之间建模空间相关性是挑战,当已知每个响应也可以受到其他相邻位置的某些可见和/或不可见效果的影响。当一个人交易空间二进制数据而不是线性空间数据时出现进一步的困难。在本文中,我们通过使用混合登录模型方法来解决空间二进制数据的这种相关模型问题,其中通过容纳配对响应的相关性和相关性的相关性来计算成对相关性。对于推论,我们使用基于真正的相关的概要(GQL)方法。研究了主要回归和随机效应方差参数的估计的渐近常态。基于有限的样本的仿真研究说明了所用的模型和估计方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号