首页> 外文期刊>Journal of statistical computation and simulation >Sparse inverse covariance estimation for high-throughput microRNA sequencing data in the Poisson log-normal graphical model
【24h】

Sparse inverse covariance estimation for high-throughput microRNA sequencing data in the Poisson log-normal graphical model

机译:泊松日志正常图形模型中高吞吐量MicroRNA测序数据的稀疏逆协方差估计

获取原文
获取原文并翻译 | 示例

摘要

We introduce a one-step EM algorithm to estimate the graphical structure in a Poisson-Log-Normal graphical model. This procedure is equivalent to a normality transformation that makes the problem of identifying relationships in high-throughput microRNA (miRNA) sequence data feasible. The Poisson-log-normal model moreover allows us to directly account for known overdispersion relationships present in this data set. We show that our EM algorithm provides a provable increase in performance in determining the network structure. The model is shown to provide an increase in performance in simulation settings over a range of network structures. The model is applied to high-throughput miRNA sequencing data from patients with breast cancer from The Cancer Genome Atlas (TCGA). By selecting the most highly connected miRNA molecules in the fitted network we find that nearly all of them are known to be involved in the regulation of breast cancer.
机译:我们介绍了一个步骤EM算法来估计泊松日志正常图形模型中的图形结构。该过程等同于正常变换,这使得识别高吞吐量MicroRNA(miRNA)序列数据中的关系的问题。泊松日志正常模型此外,我们允许我们直接考虑此数据集中存在的已知过分统计关系。我们表明我们的EM算法在确定网络结构时提供了可提供的性能提高。该模型显示在一系列网络结构上的仿真设置中的性能增加。该模型应用于来自癌症基因组Atlas(TCGA)乳腺癌患者的高通量miRNA测序数据。通过在拟合网络中选择最高连接的miRNA分子,我们发现几乎所有这些都是涉及乳腺癌的调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号