首页> 外文期刊>Journal of statistical computation and simulation >Comparison of various machine learning algorithms for estimating generalized propensity score
【24h】

Comparison of various machine learning algorithms for estimating generalized propensity score

机译:比较各种机器学习算法以估计广义倾向得分

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we conducted a simulation study to evaluate the performance of four algorithms: multinomial logistic regression (MLR), bagging (BAG), random forest (RF), and gradient boosting (GB), for estimating generalized propensity score (GPS). Similar to the propensity score (PS), the ultimate goal of using GPS is to estimate unbiased average treatment effects (ATEs) in observational studies. We used the GPS estimates computed from these four algorithms with the generalized doubly robust (GDR) estimator to estimate ATEs in observational studies. We evaluated these ATE estimates in terms of bias and mean squared error (MSE). Simulation results show that overall, the GB algorithm produced the best ATE estimates based on these evaluation criteria. Thus, we recommend using the GB algorithm for estimating GPS in practice.
机译:在本文中,我们进行了仿真研究,以评估四种算法的性能:多项式逻辑回归(MLR),装袋(BAG),随机森林(RF)和梯度提升(GB),以估算广义倾向得分(GPS) 。与倾向评分(PS)相似,使用GPS的最终目的是估计观察研究中的无偏平均治疗效果(ATE)。我们将这四种算法计算的GPS估计值与广义双稳健(GDR)估计器一起使用,以估计观测研究中的ATE。我们根据偏差和均方误差(MSE)评估了这些ATE估计值。仿真结果表明,总体而言,GB算法基于这些评估标准产生了最佳的ATE估计。因此,我们建议在实践中使用GB算法来估算GPS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号