首页> 外文期刊>Journal of statistical computation and simulation >Double threshold autoregressive conditionally heteroscedastic model building by genetic algorithms
【24h】

Double threshold autoregressive conditionally heteroscedastic model building by genetic algorithms

机译:用遗传算法建立双阈值自回归条件异方差模型

获取原文
获取原文并翻译 | 示例

摘要

Asymmetric behaviour in both mean and variance is often observed in real time series. The approach we adopt is based on double threshold autoregressive conditionally heteroscedastic (DTARCH) model with normal innovations. This model allows threshold nonlinearity in mean and volatility to be modelled as a result of the impact of lagged changes in assets and squared shocks, respectively. A methodology for building DTARCH models is proposed based on genetic algorithms (GAs). The most important structural parameters, that is regimes and thresholds, are searched for by GAs, while the remaining structural parameters, that is the delay parameters and models orders, vary in some pre-specified intervals and are determined using exhaustive search and an Asymptotic Information Criterion (AIC) like criterion. For each structural parameters trial set, a DTARCH model is fitted that maximizes the (penalized) likelihood (AIC criterion). For this purpose the iteratively weighted least squares algorithm is used. Then the best model according to the AIC criterion is chosen. Extension to the double threshold generalized ARCH (DTGARCH) model is also considered. The proposed methodology is checked using both simulated and market index data. Our findings show that our GAs-based procedure yields results that comparable to that reported in the literature and concerned with real time series. As far as artificial time series are considered, the proposed procedure seems to be able to fit the data quite well. In particular, a comparison is performed between the present procedure and the method proposed by Tsay [Tsay, R.S., 1989, Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association, Theory and Methods, 84, 231-240.] for estimating the delay parameter. The former almost always yields better results than the latter. However, adopting Tsay's procedure as a preliminary stage for finding the appropriate delay parameter may save computational time specially if the delay parameter may vary in a large interval.
机译:经常在实时序列中观察到均值和方差的不对称行为。我们采用的方法基于具有常规创新的双阈值自回归条件异方差(DTARCH)模型。该模型允许分别对资产滞后变化和平方波动的影响建模均值和波动性的阈值非线性。提出了一种基于遗传算法(GAs)的DTARCH模型构建方法。遗传算法搜索最重要的结构参数,即状态和阈值,而其余结构参数(即延迟参数和模型阶数)在某些预定间隔内变化,并使用穷举搜索和渐近信息确定标准(AIC)之类的标准。对于每个结构参数试验集,都安装了一个DTARCH模型,该模型可使(罚分)的可能性(AIC准则)最大化。为此,使用迭代加权最小二乘算法。然后根据AIC准则选择最佳模型。还考虑了对双阈值广义ARCH(DTGARCH)模型的扩展。使用模拟和市场指数数据来检查所提出的方法。我们的发现表明,我们基于GA的程序所产生的结果与文献中报道的结果相当,并且涉及实时序列。就人工时间序列而言,拟议的程序似乎能够很好地拟合数据。特别地,在本程序和Tsay [Tsay,R.S.,1989,测试和建模阈值自回归过程中提出的方法之间进行比较。 [美国统计协会,理论和方法杂志,84,231-240。]用于估计延迟参数。前者几乎总是比后者产生更好的结果。但是,如果延迟参数可能在较大的时间间隔内变化,则采用Tsay的程序作为查找适当延迟参数的初步步骤可以节省计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号