首页> 外文期刊>Journal of statistical computation and simulation >Robust non-parametric smoothing of non-stationary time series
【24h】

Robust non-parametric smoothing of non-stationary time series

机译:平稳的非平稳时间序列的非参数平滑

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the need of extracting local trends and low frequency components in non-stationary time series, this paper discusses methods of robust non-parametric smoothing. Basic approach is the combination of the parametric M-estimation with kernel and local polynomial regression methods. The result is an iterative estimator that retains a linear structure, but has kernel weights also in the direction of the prediction errors. The design of smoothing coefficients is carried out with robust cross-validation criteria and rules of thumb. The method works well both to remove the influence of patches of outliers and to detect the local breaks and persistent structural change in time series.
机译:出于在非平稳时间序列中提取局部趋势和低频成分的需要,本文讨论了鲁棒的非参数平滑方法。基本方法是将参数M估计与核方法和局部多项式回归方法相结合。结果是一个迭代估计器,它保留了线性结构,但在预测误差的方向上也具有核权重。平滑系数的设计使用健壮的交叉验证标准和经验法则进行。该方法效果很好,既可以消除离群点的影响,也可以检测时间序列中的局部断裂和持续的结构变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号