首页> 外文期刊>Journal of statistical computation and simulation >Generalized regression neural networks for municipal water consumption prediction
【24h】

Generalized regression neural networks for municipal water consumption prediction

机译:广义回归神经网络用于城市用水量预测

获取原文
获取原文并翻译 | 示例

摘要

In this study, the applicability of generalized regression neural networks (GRNN) is investigated to predict the monthly use of water from several socio-economic and climatic factors that affect water use. A dataset including a total of 108 data records is divided into two subsets: training and testing. The models consisting of the combination of the independent variables are constructed and the best-fit input structure is investigated. The performance of GRNN models in training and testing sets are compared with the observations and the best-fit prediction model is identified. For this purpose, several criteria such as normalized root mean square error, efficiency (E) and correlation coefficient (CORR) are calculated. Then, the best-fit model is also trained and tested by multiple linear regression in order to get a more reliable evaluation. The results indicated that the GRNN can be applied successfully for monthly water consumption prediction.
机译:在这项研究中,研究了广义回归神经网络(GRNN)的适用性,以从影响用水的几种社会经济和气候因素预测用水的月度使用量。包括总共108条数据记录的数据集分为两个子集:训练和测试。构建了由自变量组合而成的模型,并研究了最佳拟合输入结构。将GRNN模型在训练和测试集中的性能与观察值进行比较,并确定最佳拟合预测模型。为此,计算了几个标准,例如归一化均方根误差,效率(E)和相关系数(CORR)。然后,还通过多元线性回归对最佳拟合模型进行训练和测试,以获得更可靠的评估。结果表明,GRNN可以成功地用于月度用水量预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号