首页> 外文期刊>Journal of statistical computation and simulation >Assessing circular error probable when the errors are elliptical normal
【24h】

Assessing circular error probable when the errors are elliptical normal

机译:当误差为椭圆法线时评估圆形误差

获取原文
获取原文并翻译 | 示例

摘要

An important problem of continuing interest to engineers is the need to assess the circular error probable (CEP), a measure of the impact accuracy of a projectile or a measure of GPS point positioning accuracy. One of the challenges in addressing this problem is to construct some accurate confidence bounds or intervals for CEP in the small sample settings, where certain amount of systematic biases exist in testing experiments. Currently there is no general method available to deal with this challenge due to the intractability of the distributions of the existing CEP estimators. In this paper, in order to meet this challenge, several new approximate formulas are derived for calculating CEP, which are more accurate than the existing ones but still simple to use. Both exact and empirical expressions for the derivatives of CEP with respect to the population means and variances are also given. Using these formulas, three kinds of confidence bounds or intervals for CEP are proposed, which are based on the parametric bootstrap, the asymptotic distribution, and the Cornish-Fisher expansion, respectively. Moreover, a bias-corrected estimator of CEP is provided. The performances of these procedures are evaluated based on some Monte Carlo simulation studies. Both the theoretical and simulation results show that the Cornish-Fisher expansion-based procedure performs slightly better than the other two procedures when the downrange and cross-range variances are assumed the same. However, when these two variances are different, the simulation demonstrates that the bootstrap approach can be superior to the Cornish-Fisher for the small samples (say n = 10), and vice versa for the moderate samples (say n = 20).
机译:工程师持续关注的一个重要问题是需要评估可能的圆形误差(CEP),测量弹丸的撞击精度或测量GPS点的定位精度。解决此问题的挑战之一是为小样本环境中的CEP构建一些准确的置信范围或区间,其中在测试实验中存在一定数量的系统偏差。由于现有CEP估计量的分布难以控制,因此目前尚无通用方法可以应对这一挑战。为了应对这一挑战,本文推导了几个新的近似公式来计算CEP,这些公式比现有公式更精确,但仍易于使用。还给出了CEP导数关于总体均值和方差的精确表达式和经验表达式。利用这些公式,提出了三种CEP的置信区间或区间,分别基于参数自举,渐近分布和Cornish-Fisher展开。此外,提供了CEP的经偏置校正的估计器。这些程序的性能是基于一些蒙特卡洛模拟研究进行评估的。理论和仿真结果均表明,在假设下限范围和跨范围方差相同的情况下,基于Cornish-Fisher展开的过程的性能比其他两个过程稍好。但是,当这两个方差不同时,模拟表明,对于小样本(例如n = 10),自举方法可能会优于Cornish-Fisher,而对于中等样本(例如n = 20),反之亦然。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号