首页> 外文期刊>Journal of statistical computation and simulation >Model selection for logistic regression via association rules analysis
【24h】

Model selection for logistic regression via association rules analysis

机译:通过关联规则分析进行逻辑回归的模型选择

获取原文
获取原文并翻译 | 示例

摘要

Interaction is very common in reality, but has received little attention in logistic regression literature. This is especially true for higher-order interactions. In conventional logistic regression, interactions are typically ignored. We propose a model selection procedure by implementing an association rules analysis. We do this by (1) exploring the combinations of input variables which have significant impacts to response (via association rules analysis); (2) selecting the potential (low- and high-order) interactions; (3) converting these potential interactions into new dummy variables; and (4) performing variable selections among all the input variables and the newly created dummy variables (interactions) to build up the optimal logistic regression model. Our model selection procedure establishes the optimal combination of main effects and potential interactions. The comparisons are made through thorough simulations. It is shown that the proposed method outperforms the existing methods in all cases. A real-life example is discussed in detail to demonstrate the proposed method.
机译:交互在现实中非常普遍,但是在逻辑回归文献中却很少受到关注。对于高阶交互尤其如此。在传统的逻辑回归中,交互通常被忽略。我们通过执行关联规则分析来提出模型选择过程。我们通过(1)探索对响应有重大影响的输入变量的组合(通过关联规则分析); (2)选择潜在的(低阶和高阶)交互作用; (3)将这些潜在的相互作用转换为新的虚拟变量; (4)在所有输入变量和新创建的虚拟变量(相互作用)之间进行变量选择,以建立最佳逻辑回归模型。我们的模型选择过程确定了主要作用和潜在相互作用的最佳组合。通过全面的模拟进行比较。结果表明,所提出的方法在所有情况下均优于现有方法。详细讨论了一个真实的示例,以演示该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号