首页> 外文期刊>Journal of statistical computation and simulation >Fuzzy parametric sample selection model: Monte Carlo simulation approach
【24h】

Fuzzy parametric sample selection model: Monte Carlo simulation approach

机译:模糊参数样本选择模型:蒙特卡洛模拟方法

获取原文
获取原文并翻译 | 示例

摘要

Over a few decades, regression model has received considerable attention and has been shown to be successful when applied together with other models. One of the most successful models is the sample selection model or the selectivity model. However, uncertainties and ambiguities do exist in the models, particularly the relationship between the endogenous and exogenous variables. Therefore, it will disrupt the ability and effectiveness of the model proceeded to give the estimated value that can explain the actual situation of a phenomenon. These are the questions and problems that are yet to be explored and the main aim of this study. A new framework for estimation of the sample selection model using the concept of fuzzy modelling is introduced. In this approach, a flexible fuzzy concept hybrid with the parametric sample selection model is known as fuzzy parametric sample selection model (FPSSM). The elements of vagueness and uncertainty in the models are represented in the model construction, as a way of increasing the available information to produce a more accurate model. This led to the development of the convergence theorem presented in the form of triangular fuzzy numbers to be used in the model. Consistency is an indicator of effectiveness of the developed models and justified using Monte Carlo simulation. Consistency and efficiency of the proposed model are considered in this study. In order to achieve that condition, a Monte Carlo simulation is used. Hence, the error terms of FPSSM are assumed to follow the normal and the chi-square distributions. Simulation results show that FPSSM is consistent and efficient when its distributions are normal. Instead, the FPSSM by chi-square distribution is found to be inconsistent.
机译:在过去的几十年中,回归模型已受到相当多的关注,并且与其他模型一起应用时已证明是成功的。最成功的模型之一是样品选择模型或选择性模型。但是,模型中确实存在不确定性和歧义,尤其是内生变量和外生变量之间的关系。因此,它将破坏模型进行的能力和有效性,给出可以解释现象实际情况的估计值。这些是尚待探讨的问题和问题,也是本研究的主要目的。介绍了使用模糊建模概念估算样本选择模型的新框架。在这种方法中,与参数样本选择模型混合的灵活模糊概念称为模糊参数样本选择模型(FPSSM)。模型的模糊性和不确定性元素在模型构造中表示出来,作为增加可用信息以生成更准确模型的一种方式。这导致了收敛定理的发展,该定理以三角模糊数的形式呈现在模型中。一致性是开发模型有效性的指标,并使用蒙特卡洛模拟进行了证明。本研究考虑了所提出模型的一致性和效率。为了达到该条件,使用了蒙特卡洛模拟。因此,假设FPSSM的误差项服从正态分布和卡方分布。仿真结果表明,当FPSSM分布为正态时,它是一致且有效的。相反,发现通过卡方分布的FPSSM是不一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号