首页> 外文期刊>Journal of statistical computation and simulation >Residual life estimation based on bivariate Wiener degradation process with time-scale transformations
【24h】

Residual life estimation based on bivariate Wiener degradation process with time-scale transformations

机译:基于带有时间尺度变换的双变量维纳退化过程的剩余寿命估计

获取原文
获取原文并翻译 | 示例

摘要

The issue of residual life (RL) estimation plays an important role for products while they are in use, especially for expensive and reliability-critical products. For many products, they may have two or more performance characteristics (PCs). Here, an adaptive method of RL estimation based on bivariate Wiener degradation process with time-scale transformations is presented. It is assumed that a product has two PCs, and that each PC is governed by a Wiener process with a time-scale transformation. The dependency of PCs is characterized by the Frank copula function. Parameters are estimated by using the Bayesian Markov chain Monte Carlo method. Once new degradation information is available, the RL is re-estimated in an adaptive manner. A numerical example about fatigue cracks is given to demonstrate the usefulness and validity of the proposed method.
机译:剩余寿命(RL)估算问题对于产品在使用过程中起着重要作用,尤其是对于价格昂贵且对可靠性至关重要的产品。对于许多产品,它们可能具有两个或多个性能特征(PC)。在此,提出了一种基于带有时标变换的双变量维纳退化过程的RL估计自适应方法。假定一个产品有两台PC,并且每台PC都由带有时间刻度转换的Wiener流程控制。 PC的依赖性以Frank copula函数为特征。使用贝叶斯马尔可夫链蒙特卡罗方法估计参数。一旦有新的降级信息可用,就以自适应方式重新估计RL。给出了一个关于疲劳裂纹的数值例子,以证明该方法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号