首页> 外文期刊>Journal of statistical computation and simulation >Flexible parametric estimation technique for a competing risks model with unobserved heterogeneity: a Monte Carlo study
【24h】

Flexible parametric estimation technique for a competing risks model with unobserved heterogeneity: a Monte Carlo study

机译:具有不可观测异质性的竞争风险模型的灵活参数估计技术:蒙特卡洛研究

获取原文
获取原文并翻译 | 示例

摘要

We analyse a flexible parametric estimation technique for a competing risks (CR) model with unobserved heterogeneity, by extending a local mixed proportional hazard single risk model for continuous duration time to a local mixture CR (LMCR) model for discrete duration time. The state-specific local hazard function for the LMCR model is per definition a valid density function if we have either one or two destination states. We conduct Monte Carlo experiments to compare the estimated parameters of the LMCR model, and to compare the estimated parameters of a CR model based on a Heckman-Singer-type (HS-type) technique, with the data-generating process parameters. The Monte Carlo results show that the LMCR model performs better or at least as good as the HS-type model with respect to the estimated structure parameters in most of the cases, but relatively poorer with respect to the estimated duration-dependence parameters.
机译:通过将连续持续时间的局部混合比例风险单风险模型扩展为离散持续时间的局部混合CR(LMCR)模型,我们分析了具有未观察到的异质性的竞争风险(CR)模型的灵活参数估计技术。如果我们具有一个或两个目标状态,则LMCR模型的特定于州的局部危害函数按照定义是有效的密度函数。我们进行蒙特卡罗实验,以比较LMCR模型的估计参数,并比较基于Heckman-Singer型(HS型)技术的CR模型的估计参数与数据生成过程参数。蒙特卡洛结果表明,在大多数情况下,LMCR模型在估计的结构参数方面表现较好或至少与HS型模型相同,但在估计的持续时间依赖性参数方面则相对较差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号