首页> 外文期刊>Journal of statistical computation and simulation >Fast and flexible methods for monotone polynomial fitting
【24h】

Fast and flexible methods for monotone polynomial fitting

机译:快速灵活的单调多项式拟合方法

获取原文
获取原文并翻译 | 示例

摘要

We investigate an isotonic parameterization for monotone polynomials previously unconsidered in the statistical literature. We show that this parameterization is more flexible than its alternatives through enabling polynomials to be constrained to be monotone over either a compact interval or a semi-compact interval of the form [a,8), in addition to over the whole real line. Furthermore, algorithms based on our new parameterization estimate the fitted monotone polynomialsmuchfaster than algorithms based on previous isotonic parameterizations which in turn makes the use of standard bootstrap methodology feasible. We investigate the use of the bootstrap under monotonicity constraints to obtain confidence bands for the fitted curves and show that an adjustment by using either the 'mout of n' bootstrap or a post hoc symmetrization of the confidence bands is necessary to achieve more uniform coverage probabilities. We illustrate our new methodology with two real world examples which demonstrate not only the need for such techniques, but how restricting the monotonicity constraints to be over either a compact or semi-compact interval allows the fitting of even degree monotone polynomials. We also describe methods for using the 'mout of n' bootstrap to select the degree of the fitted monotone polynomial. All algorithms discussed in this paper are available in the R package MonoPoly ( version 0.3-6 or later).
机译:我们调查统计文献中以前未考虑的单调多项式的等渗参数化。我们表明,通过使多项式可以在紧实区间或半紧缩区间[a,8)的形式上,并且在整条实线上,将多项式约束为单调的,该参数化比其替代方案更灵活。此外,基于我们新参数化的算法估计拟合单调多项式的速度要比基于先前等渗参数化的算法快得多,这反过来又使得使用标准自举方法可行。我们调查了在单调约束下使用引导程序以获得拟合曲线的置信带的情况,并表明需要通过使用“ mout of n”引导程序或事后对称化置信带进行调整,以实现更均匀的覆盖概率。我们用两个真实的例子来说明我们的新方法,这些例子不仅说明了对这种技术的需求,而且还说明了如何限制单调性约束在紧凑或半紧凑区间内,从而可以拟合偶数阶单调多项式。我们还描述了使用'n n'引导程序来选择拟合单调多项式的次数的方法。 R包MonoPoly(版本0.3-6或更高版本)中提供了本文讨论的所有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号