首页> 外文期刊>Journal of statistical computation and simulation >Outcome-adaptive allocation with natural lead-in for three-group trials with binary outcomes
【24h】

Outcome-adaptive allocation with natural lead-in for three-group trials with binary outcomes

机译:具有自然导入的结果自适应分配用于三组结果为二进制的试验

获取原文
获取原文并翻译 | 示例

摘要

Just as Bayes extensions of the frequentist optimal allocation design have been developed for the two-group case, we provide a Bayes extension of optimal allocation in the three-group case. We use the optimal allocations derived by Jeon and Hu [Optimal adaptive designs for binary response trials with three treatments. Statist Biopharm Res. 2010; 2(3): 310-318] and estimate success probabilities for each treatment arm using a Bayes estimator. We also introduce a natural lead-in design that allows adaptation to begin as early in the trial as possible. Simulation studies show that the Bayesian adaptive designs simultaneously increase the power and expected number of successfully treated patients compared to the balanced design. And compared to the standard adaptive design, the natural lead-in design introduced in this study produces a higher expected number of successes whilst preserving power.
机译:正如针对两类情况开发了常客最优分配设计的贝叶斯扩展一样,我们也提供了三类情况下贝叶斯最优分配的扩展。我们使用Jeon和Hu得出的最佳分配[最佳自适应设计,针对具有三种治疗方法的二元反应试验。 Statist Biopharm Res。 2010; 2(3):310-318],并使用贝叶斯估计器估计每个治疗组的成功概率。我们还引入了一种自然的导入设计,可以使适应尽可能早地在试验中开始。仿真研究表明,与平衡设计相比,贝叶斯自适应设计可同时提高成功治疗患者的能力和预期人数。与标准自适应设计相比,本研究中引入的自然导入设计在保持功率的同时产生了更高的预期成功次数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号