首页> 外文期刊>Journal of statistical computation and simulation >Statistical power to detect violation of the proportional hazards assumption when using the Cox regression model
【24h】

Statistical power to detect violation of the proportional hazards assumption when using the Cox regression model

机译:使用Cox回归模型来检测违反比例风险假设的统计能力

获取原文
获取原文并翻译 | 示例

摘要

The use of the Cox proportional hazards regression model is wide-spread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest.
机译:Cox比例风险回归模型的使用广泛。该模型的关键假设是比例风险。分析师经常使用统计显着性检验来检验该假设的有效性。但是,此类评估的统计能力通常是未知的。我们使用蒙特卡洛模拟来估计两种不同方法的统计功效,以检测违反此假设的情况。当协变量为二进制时,我们发现基于模型的方法比基于mar残差的累积和的方法具有更大的功效。此外,当协变量为二进制时,事件时间分布的参数性质会影响功效。即使观察到的事件数量很多,检测到严重违反比例风险假设的统计能力也从低到中等。在许多数据集中,检测违反此假设的能力很低至适度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号