首页> 外文期刊>Journal of statistical computation and simulation >Detecting outliers and influential points: an indirect classical Mahalanobis distance-based method
【24h】

Detecting outliers and influential points: an indirect classical Mahalanobis distance-based method

机译:检测异常值和影响点:一种间接的经典马氏距离法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the problem of detecting outliers and influential points and propose an indirect classical Mahalanobis distance-based method (ICMD) for multivariate datasets. Rousseeuw and Van Zomeren described outliers as those points that do not follow the pattern of the majority of the data; this description has been commonly accepted in the statistical literature. First, we update this description to build ICMD by integrating the following idea: the role of at least one point in the data-driven pattern will be affected greatly before and after excluding an outlier. Then, a similar idea is used to identify influential points. The resulting algorithms are given in detail. Two artificial datasets and three real datasets are applied to show that ICMD is robust, swamping-free, and masking-resistant.
机译:在本文中,我们考虑了检测异常值和影响点的问题,并针对多变量数据集提出了一种间接经典的基于Mahalanobis距离的方法(ICMD)。 Rousseeuw和Van Zomeren将异常点描述为不遵循大多数数据模式的那些点。该描述已被统计文献普遍接受。首先,我们通过整合以下思想来更新此描述以构建ICMD:在排除异常值之前和之后,数据驱动模式中至少一个点的作用将受到很大影响。然后,使用类似的想法来确定影响点。给出了详细的算法。应用了两个人工数据集和三个真实数据集,以显示ICMD鲁棒,无沼泽且抗屏蔽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号