...
首页> 外文期刊>Journal of Solid State Electrochemistry >NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries
【24h】

NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries

机译:核磁共振研究锂离子电池纳米硅基阳极的锂化和脱锂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Lithiation and delithiation of nanosilicon anodes of 100–200 nm diameter have been probed by ex situ solid-state high-resolution 7Li nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) methods. Samples were charged within pouch cells up to capacities of 1,500 mAh/g at 0.1 C, and subsequently discharged at the same rate. The NMR spectra reveal important quantitative information on the local lithium environments during the various stages of the charging/discharging process. The TEM experiments show that the electrochemical lithiation of nanosilicon particles results in core-shell materials, consisting of LixSi shells surrounding a core of residual silicon. The NMR spectra yield approximate Li/Si ratios of the lithium silicides present in the shells, based on the distinct local environments of the various types of 7Li nuclei present. The combination of NMR with TEM gives important quantitative conclusions about the nature of the electrochemical lithiation process: Following the initial formation of the solid electrolyte interphase layer, which accounts for an irreversible capacity of 240 mAh/g, lithium silicide environments with intermediate Li concentrations (Li12Si7, Li7Si3, and Li13Si4) are formed at the 500 to 1,000 mAh/g range during the charging process. At a certain penetration depth, further lithiation does not progress any further toward the interior of the silicon particles but rather leads to the formation of increasing amounts of the lithium-richest silicide, Li15Si4-type environments. Delithiation does not result in the reappearance of the intermediate-stage phases but rather only changes the amount of Li15Si4 present, indicating no microscopic reversibility. Based on these results, a detailed quantitative model of nanophase composition versus penetration depth has been developed. The results indicate the power and potential of solid-state NMR spectroscopy for elucidating the charging/discharging mechanism of nano-Si anodes.
机译:通过异位固态高分辨率 7 核磁共振(NMR)和透射电子显微镜(TEM)方法,对直径为100-200nm的纳米硅阳极进行锂化和脱锂。在0.1 C下将样品充入袋式电池中,容量至1,500 mAh / g,然后以相同速率放电。 NMR光谱揭示了在充电/放电过程的各个阶段中有关本地锂环境的重要定量信息。透射电镜实验表明,纳米硅颗粒的电化学锂化形成了核壳材料,该核壳材料由包围残留硅核的Li x Si壳组成。根据存在的各种 7 Li原子核的不同局部环境,NMR谱可得出壳中存在的硅化锂的近似Li / Si比。 NMR与TEM的结合可得出有关电化学锂化过程性质的重要定量结论:最初形成固体电解质中间层后,不可逆容量为240 mAh / g,硅化锂环境中锂浓度为( Li 12 Si 7 ,Li 7 Si 3 和Li 13 Si <在充电过程中,sub> 4 )形成500至1,000 mAh / g的范围。在一定的穿透深度下,进一步的锂化不会进一步向硅颗粒内部发展,而是导致形成越来越多的最富锂硅化物Li 15 Si 4 类型的环境。精炼不会导致中间阶段的出现,而只会改变存在的Li 15 Si 4 的量,表明没有微观可逆性。基于这些结果,已经开发了纳米相组成对渗透深度的详细定量模型。结果表明,固态NMR光谱的能力和潜力阐明了纳米Si阳极的充电/放电机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号