首页> 外文期刊>Journal of software >A Robust Collaborative Filtering Recommendation Algorithm Based on Multidimensional Trust Model
【24h】

A Robust Collaborative Filtering Recommendation Algorithm Based on Multidimensional Trust Model

机译:基于多维信任模型的鲁棒协同过滤推荐算法

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering is one of the widely used technologies in the e-commerce recommender systems. It can predict the interests of a user based on the rating information of many other users. But the traditional collaborative filtering recommendation algorithm has the problems such as lower recommendation precision and weaker robustness. To solve these problems, in this paper we present a robust collaborative filtering recommendation algorithm based on multidimensional trust model. Firstly, according to the rating information of users, a multidimensional trust model is proposed. It measures the credibility of user's ratings from the following three aspects: the reliability of item recommendation, the rating similarity and the user's trustworthiness. Secondly, the computational model of trust and the traditional collaborative filtering approach are combined to select the reliable neighbor set and generate recommendation for the target user. Finally, the performances of the novel algorithm with others are compared from both sides of recommendation precision and robustness using MovieLens dataset. Compared with the existing algorithms, the proposed algorithm not only improves the quality of neighbor selection and the recommendation precision, but also has better robustness.
机译:协作过滤是电子商务推荐系统中广泛使用的技术之一。它可以基于许多其他用户的评分信息来预测用户的兴趣。但是传统的协同过滤推荐算法存在推荐精度较低,鲁棒性较弱的问题。为了解决这些问题,本文提出了一种基于多维信任模型的鲁棒协同过滤推荐算法。首先,根据用户的评价信息,提出了多维信任模型。它从以下三个方面来衡量用户评分的可信度:项目推荐的可靠性,评分相似度和用户的信任度。其次,将信任的计算模型与传统的协作过滤方法结合起来,选择可靠的邻居集并为目标用户生成推荐。最后,使用MovieLens数据集从推荐精度和鲁棒性两个方面比较了该新算法与其他算法的性能。与现有算法相比,该算法不仅提高了邻居选择的质量和推荐精度,而且具有较好的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号