首页> 外文期刊>Journal of Signal Processing Systems >FPGA-Based Efficient Design Approaches for Large Size Two’s Complement Squarers
【24h】

FPGA-Based Efficient Design Approaches for Large Size Two’s Complement Squarers

机译:基于FPGA的大型二号互补平方器的高效设计方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two optimized design approaches of two’s complement large size squarers using embedded multipliers in FPGAs. The realization of one of the approaches is based on Baugh–Wooley’s algorithm and the other one is a new sign-extension technique. To achieve efficient implementation, a set of optimized schemes for the realization of multi-level additions of the partial products is proposed. The squarers are implemented for operands of sizes ranging from 20 to 128 bits targeting Xilinx’ Spartan-3 using the ISE 8.1 synthesis and implementation tool, and from 38 to 128 bits targeting Altera’s Stratix II using the Quartus II 6.0 synthesis and implementation tool. The comparisons indicate that our proposed approaches offer substantial area savings and delay reduction. Using the Baugh–Wooley-based approach, the average saving in LUTs is close to 50% with an average delay reduction in the range of 13% to 20%. With the new sign extension approach, the area saving ranges from 54% to 70%, while the delay is reduced by approximately 25%. Embedded block usage for both approaches with different tools is reduced by 38% compared with the standard schemes. Keywords Squarers - FPGA - Embedded blocks - Large size operands - Two’s complement multipliers - Sign extension - Baugh–Wooley multiplier - Karatsuba–Ofman multiplication
机译:本文介绍了使用FPGA中的嵌入式乘法器对两个补码大平方器进行优化的两种设计方法。一种方法的实现是基于Baugh-Wooley的算法,另一种是新的符号扩展技术。为了实现有效的实现,提出了一套用于实现部分产品的多级加法的优化方案。使用ISE 8.1综合和实现工具,针对Xilinx Spartan-3的大小为20至128位的操作数实现了目标,而使用Quartus II 6.0综合和实现工具的目标对象为Altera的Stratix II,则实现了38至128位的大小。比较表明,我们提出的方法可节省大量面积并减少延迟。使用基于Baugh-Wooley的方法,LUT的平均节省接近50%,平均延迟减少范围为13%至20%。使用新的标志扩展方法,面积节省范围从54%到70%,而延迟减少了大约25%。与标准方案相比,使用不同工具的两种方法的嵌入式块使用量减少了38%。关键字Squarers-FPGA-嵌入式块-大型操作数-两个补码乘法器-符号扩展-Baugh–Wooley乘法器-Karatsuba–Ofman乘法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号