首页> 外文期刊>Journal of VLSI signal processing >Properties and Algorithms for Unfolding of Probabilistic Data-Flow Graphs
【24h】

Properties and Algorithms for Unfolding of Probabilistic Data-Flow Graphs

机译:概率数据流图展开的性质和算法

获取原文
获取原文并翻译 | 示例

摘要

It is known that any selection statement (e.g. if and switch-case statements) in an application is associated with a probability which could either be predetermined by user input or chosen at runtime. Such a statement can be regarded as a computation node whose computation time is represented by a random variable. This paper focuses on iterative applications (containing loops) reflecting those uncertainties. Such an application can then be transformed to a probabilistic data--flow graph. Two timing models, the time-invariant and time--variant models, are introduced to characterize the nature of these applications. Since there can be many unfolding factors associated with each of the possible graph outcomes, for the time--invariant model, we propose a means of selecting a constant minimum rate-optimal unfolding factor for unfolding the probabilistic graph. We demonstrate that this factor guarantees the best schedule length. We also suggest a good estimate for choosing an unfolding factor for a graph under the time--variant model. Experiments show that using our selection scheme results in an iteration period close to the theoretical iteration bound of the experimental graph. Furthermore, this paper discusses an alternative approach which selects a few optimal schedules (with respect to the graph outcomes) to be stored in the system. The other possibilities will be represented by a modified template graph.
机译:众所周知,应用程序中的任何选择语句(例如if和switcher-case语句)都与概率相关联,该概率可以由用户输入预先确定,也可以在运行时选择。可以将这样的语句视为其计算时间由随机变量表示的计算节点。本文重点介绍反映这些不确定性的迭代应用程序(包含循环)。然后可以将此类应用程序转换为概率数据流图。引入了两种时序模型,即时不变模型和时变模型,以表征这些应用程序的性质。由于时间可能不变模型中可能有许多与每个可能的图形结果相关的展开因子,因此,我们提出了一种选择恒定最小速率最优展开因子的方法来展开概率图。我们证明了此因素可以保证最佳的计划时长。我们还建议您为时变模型下的图形选择展开因子时提供一个很好的估计。实验表明,使用我们的选择方案可以使迭代周期接近实验图的理论迭代边界。此外,本文讨论了另一种方法,该方法选择一些最佳计划(相对于图形结果)以存储在系统中。其他可能性将由修改后的模板图表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号