首页> 外文期刊>Journal of VLSI signal processing >Fast RLS-Like Algorithm for Generalized Eigendecomposition and its Applications
【24h】

Fast RLS-Like Algorithm for Generalized Eigendecomposition and its Applications

机译:广义特征分解的快速RLS-like算法及其应用

获取原文
获取原文并翻译 | 示例

摘要

Generalized eigendecomposition (GED) plays a vital role in many signal-processing applications. In this paper, we will propose a new method for computing the generalized eigenvectors, which is on-line and resembles the RLS algorithm for Wiener filtering. We further present a proof to show convergence to the exact solution and simulations have shown that the algorithm is faster than most of the traditional methods. This algorithm belongs to the class of fixed-point algorithms and hence does not require any external step-size parameters like the gradient-based methods. Simulations are performed on synthetic data and compared with other algorithms found in literature. Finally we will demonstrate the application of GED in the design of a CDMA receiver for direct-sequence spread spectrum signals.
机译:广义特征分解(GED)在许多信号处理应用中起着至关重要的作用。在本文中,我们将提出一种新的用于计算广义特征向量的方法,该方法是在线的,类似于Wiener滤波的RLS算法。我们进一步提供了证明收敛到精确解的证明,并且仿真显示该算法比大多数传统方法要快。该算法属于定点算法类别,因此不需要任何外部步长参数,例如基于梯度的方法。对合成数据进行仿真,并与文献中的其他算法进行比较。最后,我们将展示GED在直接序列扩频信号CDMA接收机设计中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号