首页> 外文期刊>Journal of VLSI signal processing systems >Effective Parametric Estimation of Non-Gaussian Autoregressive Moving Average Processes Exhibiting Noise with Impulses
【24h】

Effective Parametric Estimation of Non-Gaussian Autoregressive Moving Average Processes Exhibiting Noise with Impulses

机译:具有脉冲噪声的非高斯自回归移动平均过程的有效参数估计

获取原文
获取原文并翻译 | 示例

摘要

In statistical signal processing, parametric modeling of non-Gaussian processes experiencing noise interference is a very important research topic. Particularly challenging to some researchers is how to estimate signals encountering stochastic noise process exhibiting sharp spikes. The authors propose the use of systems with impulse effect along with the classic autoregressive moving average model as a novel parametric modeling tool to successfully estimate these specific processes. The proficiency of this original system is illustrated in a performance table.
机译:在统计信号处理中,遇到噪声干扰的非高斯过程的参数化建模是一个非常重要的研究课题。对于一些研究人员而言,特别具有挑战性的是如何估计遇到随机噪声过程并呈现出尖峰的信号。作者建议将具有脉冲效应的系统与经典的自回归移动平均模型一起用作新型参数化建模工具,以成功估算这些特定过程。性能表中说明了此原始系统的熟练程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号