首页> 外文期刊>Journal of VLSI signal processing systems >Training Classifiers for Tree-structured Categories with Partially Labeled Data
【24h】

Training Classifiers for Tree-structured Categories with Partially Labeled Data

机译:带有部分标签数据的树结构类别的训练分类器

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a new method for training classifiers for multi-class problems when classes are not (necessarily) mutually exclusive and may be related by means of a probabilistic tree structure. It is based on the definition of a Bayesian model relating network parameters, feature vectors and categories. Learning is stated as a maximum likelihood estimation problem of the classifier parameters. The proposed algorithm is specially suited to situations where each training sample is labeled with respect to only one or part of the categories in the tree. Our experiments on information retrieval scenarios show the advantages of the proposed method.
机译:在本文中,我们提出了一种新的训练分类器的方法,该分类器用于在类别不是(必要)互斥并且可以通过概率树结构进行关联时对多类别问题进行分类。它基于有关网络参数,特征向量和类别的贝叶斯模型的定义。学习被描述为分类器参数的最大似然估计问题。所提出的算法特别适合于仅针对树中的一个或部分类别标记每个训练样本的情况。我们在信息检索场景中的实验表明了该方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号