首页> 外文期刊>Journal of VLSI signal processing systems >An Innovative Weighted 2DLDA Approach for Face Recognition
【24h】

An Innovative Weighted 2DLDA Approach for Face Recognition

机译:一种创新的加权2DLDA人脸识别方法

获取原文
获取原文并翻译 | 示例

摘要

Two Dimensional Linear Discrimination Analysis (2DLDA) is an effective feature extraction approach for face recognition, which manipulates on the two dimensional image matrices directly. However, some between-class distances in the projected space are too small and this may produce a large erroneous classification rate. In this paper we propose a new 2DLDA-based approach that can overcome such drawback for the existing 2DLDA. The proposed approach redefines the between-class scatter matrix by putting a weighting function based on the between-class distances, and this will balance the between-class distances in the projected space iteratively. In order to design an effective weighting function, the between-class distances are calculated and then used to iteratively change the between-class scatter matrix, which eventually leads to an optimal projection matrix. Experimental results show that the proposed approach can improve the recognition rates on benchmark data- bases such as the ORL database, the Yale database, the YaleB database and the Feret database in comparison with other 2DLDA variants.
机译:二维线性判别分析(2DLDA)是一种有效的人脸识别特征提取方法,可直接在二维图像矩阵上进行操作。但是,投影空间中的某些类间距离太小,这可能会产生较大的错误分类率。在本文中,我们提出了一种新的基于2DLDA的方法,该方法可以克服现有2DLDA的这种缺点。所提出的方法通过放置基于类间距离的加权函数来重新定义类间散布矩阵,这将迭代地平衡投影空间中的类间距离。为了设计有效的加权函数,计算类间距离,然后将其用于迭代地更改类间散布矩阵,最终生成最佳投影矩阵。实验结果表明,与其他2DLDA变体相比,该方法可以提高基准数据库(如ORL数据库,Yale数据库,YaleB数据库和Feret数据库)的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号