首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >A Novel Multi-Feature Descriptor for Human Detection Using Cascaded Classifiers in Static Images
【24h】

A Novel Multi-Feature Descriptor for Human Detection Using Cascaded Classifiers in Static Images

机译:一种新的用于级联分类器的静态图像人类检测多特征描述符。

获取原文
获取原文并翻译 | 示例

摘要

Combining multiple kinds of features is useful to achieve the state of the art performance for human detection. But combining more features will result in high dimensional feature descriptors, which is time-consuming for feature extraction and detection. How to exploit different kinds of features and reduce the dimension of feature descriptor are challenging problems. A novel multi-feature descriptor (MFD) combining Optimal Histograms of Oriented Gradients (OHOG), Local Binary Patterns (LBP) and Color Self-Similarity in Neighbor (NCSS) is proposed. Firstly, a discriminative feature selection and combination strategy is introduced to obtain distinctive local HOGs and construct OHOG feature. OHOG combines local discriminative and correlated information, which improves the classification performance compared with HOG. Besides, LBP describes texture feature of human appearance. Finally, a compact and lower dimensional feature NCSS is proposed to encode the self-similarity of color histograms in limited neighbor sub-regions instead of global regions. The proposed MFD describes human appearance from gradient, texture and color features, which can complement each other and improve the robustness of human description. To further improve detection speed without decreasing accuracy, we cascade early stages of Adaboost based on selected local HOGs and SVM classifier based on MFD. The former part can reject most non-human detection windows quickly and the final SVM classifier can guarantee a high accuracy. Experimental results on public dataset show that the proposed MFD and cascaded classifiers framework can achieve promising results both in accuracy and detection speed.
机译:组合多种功能对于实现人体检测的最新技术水平很有用。但是结合更多特征将导致高维特征描述符,这对于特征提取和检测是很费时的。如何利用各种特征并减小特征描述符的维数是具有挑战性的问题。提出了一种新颖的多特征描述子(MFD),该特征组合了定向梯度的最佳直方图(OHOG),局部二值图案(LBP)和邻居的颜色自相似性(NCSS)。首先,引入区分特征的选择和组合策略,以获得独特的局部HOG,并构造OHOG特征。 OHOG结合了本地区分性信息和相关信息,与HOG相比提高了分类性能。此外,LBP描述了人类外观的纹理特征。最后,提出了一种紧凑的低维特征NCSS来在有限的邻近子区域而不是全局区域中编码颜色直方图的自相似性。拟议的MFD通过渐变,纹理和颜色特征来描述人的外观,这可以相互补充并提高人性描述的鲁棒性。为了进一步提高检测速度而又不降低准确性,我们基于选定的本地HOG和基于MFD的SVM分类器级联了Adaboost的早期阶段。前一部分可以快速拒绝大多数非人为检测窗口,而最终的SVM分类器可以保证较高的准确性。在公共数据集上的实验结果表明,提出的MFD和级联分类器框架可以在准确性和检测速度上取得令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号