首页> 外文期刊>Journal of VLSI signal processing systems >Column Access-aware In-stream Data Cache with Stream Processing Framework
【24h】

Column Access-aware In-stream Data Cache with Stream Processing Framework

机译:具有流处理框架的列访问感知的流内数据缓存

获取原文
获取原文并翻译 | 示例

摘要

In recent years, researches focus on addressing the query bottleneck issue of big data, e.g. NoSQL databases, MapReduce and big data processing framework. Although NoSQL databases have many advantages on On-Line Analytical Processing (OLAP), it is a big project to migrate Relational Database Management System (RDBMS) to NoSQL. Therefore, the optimization of RDBMS is still important. In this paper, we construct Column Access-aware In-stream Data Cache (CAIDC) for relational databases, which is an integral part of RDBMS and in-memory cache. Furthermore, a live synchronization approach from physical RDBMS to in-memory data cache using stream processing framework is proposed. On one hand, CAIDC provides low latency while supporting log-based trigger in the presence of updates to maintain data consistency because of stream processing framework. On the other hand, CAIDC translates the frequently accessed data to column-oriented in-memory cache by the column access frequency to ensure heavy hitter queries. Finally, experimental results show that this approach is supporting a wide range of applications with big data.
机译:近年来,研究重点是解决大数据的查询瓶颈问题,例如NoSQL数据库,MapReduce和大数据处理框架。尽管NoSQL数据库在联机分析处理(OLAP)上具有许多优势,但是将关系数据库管理系统(RDBMS)迁移到NoSQL是一个很大的项目。因此,RDBMS的优化仍然很重要。在本文中,我们为关系数据库构建了列访问感知的流内数据缓存(CAIDC),它是RDBMS和内存缓存的组成部分。此外,提出了使用流处理框架从物理RDBMS到内存中数据缓存的实时同步方法。一方面,由于流处理框架,CAIDC提供了低延迟,同时在存在更新时支持基于日志的触发,以保持数据一致性。另一方面,CAIDC通过列访问频率将频繁访问的数据转换为面向列的内存中高速缓存,以确保进行大量的查询。最后,实验结果表明,该方法支持大数据的广泛应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号