首页> 外文期刊>Journal of VLSI signal processing systems >Fisher Discriminative Dictionary Learning for Vehicle Classification in Acoustic Sensor Networks
【24h】

Fisher Discriminative Dictionary Learning for Vehicle Classification in Acoustic Sensor Networks

机译:用于声学传感器网络中车辆分类的Fisher判别词典学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a discriminative dictionary learning framework for vehicle classification to improve the classification accuracy, and study the fisher discriminative dictionary learning (FDDL) approach in acoustic sensor networks. More precisely, the acoustic sensor data sets are captured to measure the vehicle running event. The multidimensional frequency spectrum features of sensor data sets are extracted using Mel frequency cepstral coefficients (MFCC), and the vehicle classification scheme is solved using fisher discriminative dictionary learning method, which exploits the discriminative information in both the representation residuals and the representation coefficients. To further analyze the performance of our proposed model, we extend our model to deal with sparse environmental noise. Extensive experiments are conducted on acoustic sensor databases and the results demonstrate that our proposed model shows superior performance in this vehicle classification framework compared to SVM, SRC, KSRC and LC-KSVD algorithms.
机译:在本文中,我们提出了一种用于车辆分类的判别词典学习框架,以提高分类的准确性,并研究了声学传感器网络中的Fisher判别词典学习(FDDL)方法。更精确地,声学传感器数据集被捕获以测量车辆行驶事件。利用梅尔频率倒谱系数(MFCC)提取传感器数据集的多维频谱特征,并使用菲舍尔鉴别词典学习方法求解车辆分类方案,该方法利用了表示残差和表示系数中的区分信息。为了进一步分析我们提出的模型的性能,我们扩展了模型以处理稀疏的环境噪声。在声学传感器数据库上进行了广泛的实验,结果表明,与SVM,SRC,KSRC和LC-KSVD算法相比,我们提出的模型在该车辆分类框架中显示出优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号