首页> 外文期刊>Journal of VLSI signal processing systems >Clustering and DCT Based Color Point Cloud Compression
【24h】

Clustering and DCT Based Color Point Cloud Compression

机译:基于聚类和基于DCT的色点云压缩

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new point cloud compression method is proposed. The 3D color point cloud is firstly mean-shift clustered into many homogeneous blocks based on the similar spatial (XYZ) information of each point. Based on the RANdom SAmple Consensus (RANSAC) algorithm, those points being clustered in the same block are fitted by a 3D plane and all these points belonging to the same block are projected to this corresponding plane. For every plane an optimal rectangle bounding box is identified and is divided into nxn grids, the color (RGB) information associated with each grid point is replaced by the average of RGB values of all the projected points falling in this grid. Finally, a 2D DCT (Discrete Cosine Transform) transform is performed on these nxn grids points. The compressing ratio can reach 32 with negligible spatial and color distortion.
机译:本文提出了一种新的点云压缩方法。首先,基于每个点的相似空间(XYZ)信息,将3D颜色点云均值移动聚类为许多同质块。基于RANdom SAmple Consensus(RANSAC共识)(RANSAC)算法,将聚集在同一块中的那些点装配到3D平面中,并将属于同一块的所有这些点投影到该对应平面上。对于每个平面,确定一个最佳矩形边界框并将其划分为nxn个网格,与每个网格点关联的颜色(RGB)信息将替换为该网格中所有投影点的RGB值的平均值。最后,在这些nxn网格点上执行2D DCT(离散余弦变换)变换。压缩比可以达到32,而空间和颜色失真可以忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号