首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network
【24h】

Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network

机译:结合变分方法和卷积神经网络促进近距离龋的检测

获取原文
获取原文并翻译 | 示例

摘要

Proximal dental caries are diagnosed using dental X-ray images. Unfortunately, the diagnosis of proximal dental caries is often stifled due to the poor quality of dental X-ray images. Therefore, we propose an automatic detection system to detect proximal dental caries in periapical images for the first time. The system comprises four modules: horizontal alignment of pictured teeth, probability map generation, crown extraction, and refinement. We first align the pictured teeth horizontally as a pre-process to minimize performance degradation due to rotation. Next, a fully convolutional network are used to produce a caries probability map while crown regions are extracted based on optimization schemes and an edge-based level set method. In the refinement module, the caries probability map is refined by the distance probability modeled by crown regions since caries are located near tooth surfaces. Also we adopt non-maximum suppression to improve the detection performance. Experiments on various periapical images reveal that the proposed system using a convolutional neural network (CNN) and crown extraction is superior to the system using a na < ve CNN.
机译:使用牙科X射线图像诊断近端龋齿。不幸的是,由于牙科X射线图像的质量较差,通常难以确定对近端龋齿的诊断。因此,我们提出了一种自动检测系统来首次检测根尖周图像中的近端龋齿。该系统包括四个模块:牙齿的水平对齐,概率图生成,冠冠提取和细化。我们首先将如图所示的牙齿水平对齐作为预处理,以最大程度地减少由于旋转引起的性能下降。接下来,使用全卷积网络生成龋齿概率图,同时基于优化方案和基于边缘的水平集方法提取冠状区域。在优化模块中,由于龋齿位于牙齿表面附近,因此通过牙冠区域建模的距离概率对龋齿概率图进行了精细化。另外,我们采用非最大抑制来提高检测性能。在各种根尖周图像上的实验表明,所提出的使用卷积神经网络(CNN)和冠冠提取的系统优于使用单纯的CNN的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号