首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Deep Unfolded Extended Conjugate Gradient Method for Massive MIMO Processing with Application to Reciprocity Calibration
【24h】

Deep Unfolded Extended Conjugate Gradient Method for Massive MIMO Processing with Application to Reciprocity Calibration

机译:深度展开的扩展共轭梯度方法,用于互易校准的大规模MIMO处理

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider deep unfolding the standard iterative conjugate gradient (CG) algorithm to solve a linear system of equations. Instead of being adjusted with known rules, the parameters are learned via backpropagation to yield the optimal results. However, the proposed unfolded CG (UCG) is extended wherein a scalar parameter is substituted by a matrix-parameter to augment the degrees of freedom per layer. Once the training is completed, the UCG has revealed to require far a smaller number of layers than the number of iterations needed using the standard iterative CG. It is also shown to be very robust to noise and outperforms the standard CG in low signal to noise ratio (SNR) region. A key merit of the proposed approach is the fact that no explicit training data is dedicated to the learning phase as the optimization process relies on the residual error which is not explicitly expressed as a function of the desired data. As an example, the proposed UCG is applied to solve the reciprocity calibration problem encountered in massive MIMO (Multiple-Input Multiple-Output) systems.
机译:在本文中,我们考虑深度展开标准迭代共轭梯度(CG)算法来解决方程的线性系统。通过BackPropagation来学习参数而不是用已知规则进行调整,而不是调整参数以产生最佳结果。然而,扩展所提出的展开的CG(UCG),其中标量参数被矩阵参数代替,以增加每层的自由度。一旦培训完成,UCG就透露,需要远程较少数量的层,而不是使用标准迭代CG所需的迭代次数。它还显示出对噪声非常稳健,并且在低信噪比(SNR)区域的低信号中占据标准CG。所提出的方法的一个关键优点是,由于优化过程依赖于未明确表示为所需数据的函数的剩余错误,没有专用于学习阶段的明确训练数据。作为示例,建议的UCG应用于解决大规模MIMO(多输入多输出)系统中遇到的互惠校准问题。

著录项

  • 来源
  • 作者单位

    Univ Quebec Trois Rivieres Dept Elect & Comp Engn 3351 Boul Forges Trois Rivieres PQ Canada|Univ Quebec Trois Rivieres Lab Signaux & Syst Integres Trois Rivieres PQ Canada|Univ Quebec Trois Rivieres Chaire Rech Signaux & Intelligence Syst Haute Per Trois Rivieres PQ Canada;

    Univ Quebec Trois Rivieres Dept Elect & Comp Engn 3351 Boul Forges Trois Rivieres PQ Canada|Univ Quebec Trois Rivieres Lab Signaux & Syst Integres Trois Rivieres PQ Canada|Univ Quebec Trois Rivieres Chaire Rech Signaux & Intelligence Syst Haute Per Trois Rivieres PQ Canada;

    Univ Quebec Trois Rivieres Dept Elect & Comp Engn 3351 Boul Forges Trois Rivieres PQ Canada|Univ Quebec Trois Rivieres Lab Signaux & Syst Integres Trois Rivieres PQ Canada|Univ Quebec Trois Rivieres Chaire Rech Signaux & Intelligence Syst Haute Per Trois Rivieres PQ Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep unfolding; Conjugate gradient; Massive MIMO; Reciprocity calibration; Least squares;

    机译:深度展开;共轭梯度;巨大的MIMO;互惠校准;最小二乘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号