首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Asynchronous Parallel Surrogate Optimization Algorithm for Quantitative Strategy Parameter Tuning
【24h】

Asynchronous Parallel Surrogate Optimization Algorithm for Quantitative Strategy Parameter Tuning

机译:用于定量策略参数调谐的异步并行代理优化算法

获取原文
获取原文并翻译 | 示例

摘要

Surrogate-model based optimization algorithms can be applied to solve expensive black-box function optimization problem. With the introduction of ensemble model, surrogate-model based algorithms can be automatically adjusted to adapt to various specific problems with different parameter spaces and no need for manual design of surrogate model. However, introduction of ensemble model significantly increases the computational load of surrogate-model based algorithms for training and updating of ensemble model. In this article, parallel computing technology is utilized to speed up the weight updating related computation for the ensemble surrogate model built by Dempster-Shafer theory, and a novel parallel sampling mechanism based on stochastic response surface method is developed to implement asynchronous parameter optimization, based on witch an asynchronous parallel global optimization algorithm is proposed. Furthermore, the parallel algorithm proposed is applied to quantitative trading strategy tuning in financial market and shows both feasibility and effectiveness in actual application. Experiments demonstrates that, the algorithms can achieve high speedup ratio and scalability with no degradation of optimization performance.
机译:基于代理模型的优化算法可以应用于解决昂贵的黑盒功能优化问题。随着集合模型的引入,可以自动调整基于代理模型的算法,以适应不同参数空间的各种特定问题,不需要手动设计代理模型。然而,集合模型的引入显着提高了基于代理模型的计算负荷,用于培训和更新集合模型。在本文中,利用并行计算技术来加速Dempster-Shafer理论构建的集合代理模型的权重更新相关计算,并且开发了一种基于随机响应表面方法的新颖的并行采样机制来实现基于异步参数优化在Witch上提出了一种异步并行全局优化算法。此外,所提出的并行算法应用于金融市场中的定量交易策略调整,并在实际应用中显示了可行性和有效性。实验表明,算法可以实现高速度和可扩展性,没有优化性能的降级。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号