首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Pedestrian Detection by Using Weighted Channel Features with Hierarchical Region Reduction
【24h】

Pedestrian Detection by Using Weighted Channel Features with Hierarchical Region Reduction

机译:使用加权通道特征和分层区域约简的行人检测

获取原文
获取原文并翻译 | 示例

摘要

Pedestrian detection in real time to avoid collision for unmanned vehicles is an interesting and challenging problem in computer vision. This paper proposes a new pedestrian detection method by using an appearance-based multi-channel features. The method involves only the monocular environment since most cameras have only a single lens. A pedestrian is represented by the combination of channel features partly weighted according to the clearly visual appearance and occlusion. Handling partial occlusion is carried out by constructing a hierarchical region reduction structure. A full pedestrian image is disintegrated into several horizontal and vertical regions. Each region captures the outstanding appearance of pedestrian's body. The features extracted from all regions are hierarchically combined to perform the concurrent detection of pedestrian's occurrence. The experiment yielded good results using standard benchmark dataset. The performance evaluations on miss rate, average false positive per image, and the trade-off between running time and performance show that the proposed detection framework is a reasonable option for real world applications.
机译:实时行人检测以避免无人驾驶车辆碰撞是计算机视觉中一个有趣且具有挑战性的问题。本文提出了一种基于外观的多通道特征行人检测新方法。该方法仅涉及单眼环境,因为大多数相机只有一个镜头。行人由通道特征的组合表示,部分通道特征是根据清晰的视觉外观和遮挡进行部分加权的。通过构造分层区域缩小结构来执行部分遮挡的处理。完整的行人图像分解为几个水平和垂直区域。每个区域都捕捉到行人身体的杰出外观。从所有区域提取的特征将进行分层组合,以执行对行人事件的并发检测。使用标准基准数据集,实验产生了良好的结果。对未命中率,每个图像的平均误报率以及运行时间与性能之间的权衡进行性能评估,结果表明,所提出的检测框架是实际应用的合理选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号