首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Rapid Hybrid Simulation Methods for Exploring the Design Space of Signal Processors with Dynamic and Scalable Timing Models
【24h】

Rapid Hybrid Simulation Methods for Exploring the Design Space of Signal Processors with Dynamic and Scalable Timing Models

机译:利用动态和可扩展时序模型探索信号处理器设计空间的快速混合仿真方法

获取原文
获取原文并翻译 | 示例

摘要

As today's state-of-the-art signal processing systems often require heterogeneous computing and special-purpose accelerators to offer highly efficient performance for mixed application workloads, including not only traditional signal processing algorithms, but also the demands to enable smart applications with data analytics, machine learning, as well as the capability interacting with both physical and cyber worlds via sensors and networks. Thus, the complexity of such systems has been increasing, and the focus of designing has been shifting to exploring the design space with a mixture of processing cores/accelerators and the interconnection networks between the components to optimize the performance and efficiency at the system level. Traditional simulation tools may offer accurate performance estimation at micro architectural level, but it is highly complicated to combine the simulators for various components to perform complex applications, and they fall in short in terms of their capabilities to profiling application workload. Furthermore, the speed of such complex simulation would be unacceptably slow with traditional system-level simulation framework such as SystemC. To solve the problem, we develop a rapid hybrid emulation/simulation framework that allows the user to execute full-blown system and application software and plug in emulators, simulators, and timing models for various components in the prototype system, switching the timing models dynamically with our just-in-time model selection mechanism, and connect the emulated/simulated components with scalable communication channels, so that the framework can be accelerated effectively by a multicore host. Our just-in-time model selection mechanism is capable of detecting and skipping regular program patterns to save the simulation time dramatically. In addition, our framework is capable of estimating the performance of different system configurations with concurrent multiple timing models, which further saves the time needed for traversing the design space. Our experimental results have shown that our dynamic model selection and multi-model approach collectively can speed up the design space exploration by 13.4 times on a quad-core host for cache simulation.
机译:由于当今最先进的信号处理系统通常需要异构计算和专用加速器才能为混合应用程序工作负载提供高效的性能,不仅包括传统的信号处理算法,还包括通过数据分析实现智能应用程序的需求,机器学习以及通过传感器和网络与物理世界和网络世界进行交互的功能。因此,这种系统的复杂性一直在增加,设计的重点已经转移到探索空间,其中混合了处理核心/加速器和组件之间的互连网络,以优化系统级的性能和效率。传统的仿真工具可以在微体系结构级别提供准确的性能评估,但是将各种组件的仿真器组合起来以执行复杂的应用程序非常复杂,并且在分析应用程序工作负载的能力方面也很不足。此外,使用诸如SystemC之类的传统系统级仿真框架,这种复杂仿真的速度将令人无法接受地慢。为了解决该问题,我们开发了一种快速的混合仿真/仿真框架,该框架允许用户执行功能完善的系统和应用软件,并为原型系统中的各个组件插入仿真器,仿真器和时序模型,从而动态切换时序模型借助我们的实时模型选择机制,并将仿真/模拟的组件与可扩展的通信渠道连接在一起,以便多核主机可以有效地加速框架。我们的实时模型选择机制能够检测和跳过常规程序模式,从而大大节省了仿真时间。另外,我们的框架能够通过并发的多个时序模型来估计不同系统配置的性能,从而进一步节省遍历设计空间所需的时间。我们的实验结果表明,我们的动态模型选择和多模型方法共同可以将四核主机上的设计空间探索速度提高13.4倍,以进行缓存仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号