首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Gait Verification System Through Multiperson Signature Matching for Unobtrusive Biometric Authentication
【24h】

Gait Verification System Through Multiperson Signature Matching for Unobtrusive Biometric Authentication

机译:通过多人签名匹配的步态验证系统进行非侵入式生物识别

获取原文
获取原文并翻译 | 示例

摘要

The unobtrusive nature of gait facilitates the development of optimal biometric authentication systems. Recent approaches on video-analytic gait authentication show excellent results but their implementations are threshold-based which trade off a set amount of FAR (false acceptance rate) to produce an acceptable FRR (false rejection rate). The proposed multiperson signature mapping (MSM) approach overcomes this drawback with a design that substantially decreases the FAR of the authentication system without having to increase the FRR. This technique removes the need of an empirically adjusted threshold. The state-of-the-art algorithms mostly prefer the nearest neighbor (NN) classifier where the Euclidean distance calculated from the extracted feature hyperplane is taken as the similarity measure. Our study proves that the Bayes' rule applied over the extracted feature set provides a much better performance compared to the conventional NN approach. The MSM is applied on top of template-based gait recognition algorithms to produce an efficient gait authentication system. The method is evaluated on four different gait templates including the popular Gait Energy Image (GEI) and its variation with the genetic template segmentation (GTS). The study analyzes the performance across different clothing and carrying conditions. The deployment of the gait authentication system for practical application is explained in detail. Experimental results with the CASIA-B gait database depict the potential of our proposed approach.
机译:步态的通俗易懂的特性促进了最佳生物识别系统的发展。视频分析步态认证的最新方法显示出了出色的结果,但是它们的实现是基于阈值的,它权衡了一定数量的FAR(错误接受率)以产生可接受的FRR(错误拒绝率)。所提出的多人签名映射(MSM)方法通过一种设计来克服了这一缺点,该设计实质上降低了身份验证系统的FAR,而不必增加FRR。该技术消除了根据经验调整阈值的需要。最新的算法最喜欢最近邻居(NN)分类器,其中从提取的特征超平面计算出的欧几里得距离被用作相似性度量。我们的研究证明,与传统的NN方法相比,应用于提取的特征集的贝叶斯规则提供了更好的性能。 MSM应用于基于模板的步态识别算法之上,以产生高效的步态认证系统。该方法在四种不同的步态模板上进行了评估,包括流行的步态能量图像(GEI)及其随遗传模板分割(GTS)的变化。该研究分析了不同衣服和携带条件下的性能。详细说明了用于实际应用的步态认证系统的部署。 CASIA-B步态数据库的实验结果说明了我们提出的方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号