首页> 外文期刊>Journal of Scientific Computing >A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations
【24h】

A Dimensional Splitting Exponential Time Differencing Scheme for Multidimensional Fractional Allen-Cahn Equations

机译:多维分数艾伦 - CAHN方程的尺寸分割指数时间差分方案

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with numerical methods for solving the multidimensional Allen-Cahn equations with spatial fractional Riesz derivatives. A fully discrete numerical scheme is proposed using a dimensional splitting exponential time differencing approximation for the time integration with finite difference discretization in space. Theoretically, we prove that the proposed numerical scheme can unconditionally preserve the discrete maximum principle. The error estimate in maximum-norm of the proposed scheme is also established in the fully discrete sense. In practical computation, the proposed algorithm can be carried out by computing linear systems and the matrix exponential associated with only one dimensional discretized matrices that possess Toeplitz structure. Meanwhile, fast methods for inverting the Toeplitz matrix and computing the Toeplitz exponential multiplying a vector are exploited to reduce the complexity. Numerical examples in two and three spatial dimensions are given to illustrate the effectiveness and efficiency of the proposed scheme.
机译:本文涉及具有空间分数riesz衍生物的多维艾伦 - CAHN方程的数值方法。使用尺寸分割指数时间差异近似为空间的有限差分离散化的时间集成的尺寸分割指数时间差异来提出完全离散的数值方案。从理论上讲,我们证明了所提出的数值方案可以无条件地保护离散的最大原理。建议方案的最大规范中的误差估计也在完全离散的意义上建立。在实际计算中,可以通过计算线性系统和与具有具有Toeplitz结构的一维离散矩阵相关联的线性系统和矩阵指数来执行所提出的算法。同时,利用用于反转Toeplitz矩阵的快速方法,并利用计算载体乘以向量来降低复杂性。给出了两个和三个空间尺寸中的数值例子来说明所提出的方案的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号