首页> 外文期刊>Journal of Scientific Computing >Mixed Discontinuous Galerkin Finite Element Method For The Biharmonic Equation
【24h】

Mixed Discontinuous Galerkin Finite Element Method For The Biharmonic Equation

机译:双调和方程的混合间断Galerkin有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we first split the biharmonic equation △~2u = f with nonhomoge-neous essential boundary conditions into a system of two second order equations by introducing an auxiliary variable v = △u and then apply an hp-mixed discontinuous Galerkin method to the resulting system. The unknown approximation v_h of v can easily be eliminated to reduce the discrete problem to a Schur complement system in v_h, which is an approximation of u. A direct approximation v_h of v can be obtained from the approximation u_h of u. Using piecewise polynomials of degree p ≥ 3, a priori error estimates of u - u_h in the broken H~1 norm as well as in L~2 norm which are optimal in h and suboptimal in p are derived. Moreover, a priori error bound for v - v_h in L~2 norm which is suboptimal in h and p is also discussed. When p = 2, the preset method also converges, but with suboptimal convergence rate. Finally, numerical experiments are presented to illustrate the theoretical results.
机译:在本文中,我们首先通过引入辅助变量v =△u将具有非均匀基本边界条件的双调和方程△〜2u = f分解为两个二阶方程组,然后将hp混合不连续Galerkin方法应用于结果系统。 v的未知近似v_h可以轻松消除,以将离散问题减少到v_h中的Schur补码系统,这是u的近似值。可以从u的近似u_h获得v的直接近似v_h。使用度数p≥3的分段多项式,可以得出在h最优且在p最优的L〜2范数和L〜2范数中u-u_h的先验误差估计。此外,还讨论了在L〜2范数中v-v_h的先验误差界,在h和p中次优。当p = 2时,预设方法也收敛,但收敛速度不理想。最后,通过数值实验说明了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号