首页> 外文期刊>Journal of Real-Time Image Processing >V3O2: hybrid deep learning model for hyperspectral image classification using vanilla 3D and octave-2D convolution
【24h】

V3O2: hybrid deep learning model for hyperspectral image classification using vanilla 3D and octave-2D convolution

机译:V3O2:使用vanilla 3D和Octave-2D卷积的高光谱图像分类混合深度学习模型

获取原文
获取原文并翻译 | 示例

摘要

Remote sensing image analysis is an emerging area of research and is used for various applications such as climate analysis, crop monitoring and change detection. Hyperspectral image (HSI) is one of the dominant remote sensing imaging modalities that captures information beyond the visible spectrum. The evolution of deep learning has made a significant impact on HSI analysis, mainly for its classification. The spatial-spectral feature-based classification model improves the classification accuracy of hyperspectral images (HSIs). However, these models are computationally expensive, and redundancy exists in the spatial dimension of features. This research work proposes a hybrid convolutional neural network (CNN) for HSI classification. The proposed model uses principal component analysis (PCA) as a preprocessing technique for optimal band extraction from HSIs. The hybrid CNN classification technique extracts the spectral and spatial features using three-dimensional CNN (3D CNN). These features are fed into a two-dimensional CNN (2D CNN) for further feature extraction and classification. The redundancy in spatial features of the hybrid CNN model is reduced by octave convolution (OctConv) instead of standard vanilla convolution. OctConv factorizes the spatial features into lower and higher spatial frequencies, and different convolutions are performed on them based on their frequencies. The hybrid model is compared against various state-of-the-art CNN-based techniques and found that the accuracy is boosted with a lesser computational cost.
机译:遥感图像分析是一种新兴的研究领域,用于各种应用,如气候分析,作物监测和变化检测。高光谱图像(HSI)是捕获超出可见光谱之外的信息的主导遥感成像模态之一。深度学习的演变对HSI分析产生了重大影响,主要是为了其分类。基于空间谱特征的分类模型提高了超光谱图像(HSIS)的分类精度。然而,这些模型是计算昂贵的,并且在特征的空间维度中存在冗余。该研究工作提出了一种用于HSI分类的混合卷积神经网络(CNN)。所提出的模型使用主成分分析(PCA)作为HSIS最佳频带提取的预处理技术。混合CNN分类技术使用三维CNN(3D CNN)提取光谱和空间特征。将这些特征馈入到二维CNN(2D CNN)中以进行进一步的特征提取和分类。通过八度卷积(OctConv)而不是标准的香草卷积,减少了混合CNN模型的空间特征的冗余。 OCTCONV将空间特征分解为更低且较高的空间频率,并且基于其频率对它们执行不同的卷曲。将混合模型与各种最先进的基于CNN的技术进行比较,发现精度以较小的计算成本升高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号