首页> 外文期刊>Journal of Real-Time Image Processing >Real-time UHD video super-resolution and transcoding on heterogeneous hardware
【24h】

Real-time UHD video super-resolution and transcoding on heterogeneous hardware

机译:实时UHD视频超分辨率和异构硬件的转码

获取原文
获取原文并翻译 | 示例

摘要

Videos have become the major type of data produced and consumed every day. With screens grow larger, ultra high definition (UHD) videos are becoming more popular since they provide better visual experience. However, video contents with UHD resolution are still scarce. High-performance video super-resolution (SR) techniques that can obtain high resolution (HR) videos from low resolution (LR) sources are recently used in UHD video production. Deep learning (DL)-based SR methods can provide HR videos with appreciable objective and subjective qualities, while their massive computational complexity makes the processing speed far slower than real-time even on GPU servers when producing UHD videos. Moreover, transcoding and other video processing algorithms executed during the enhancement are also time and resource consuming, which performs relatively slow on ordinary CPU and GPU servers. Nowadays, hardware including GPU, field-programmable gate array (FPGA) and application specific integrated circuit (ASIC) are proved to have outstanding capability on image and video processing tasks in different aspects, and there are also dedicated hardware accelerators meant for specific video processing tasks. In this paper, we focus on accelerating a UHD video enhancement workflow on heterogeneous system with multiple hardware accelerators. First, we optimize the most time consuming task, video SR, with CUDNN and CUDA libraries to achieve real-time processing speed for a single UHD output frame on an ordinary GPU. Second, we design a GPU-friendly multi-thread scheduling algorithm for data and computation to better utilize GPU resources and achieve real-time performance on outputting UHD video clips. Third, targeting on production environment, we build a UHD video enhancement application on selected heterogeneous hardware, with an integrated command line tool of our proposed algorithm, and achieve 60 fps real-time end to end processing speed. Experiments show high efficiency, robustness and compatibility of our approach.
机译:视频已成为每天产生和消耗的主要数据类型。由于屏幕变大,超高清定义(UHD)视频变得越来越受欢迎,因为它们提供更好的视觉体验。但是,具有UHD分辨率的视频内容仍然稀缺。最近在UHD视频制作中最近使用能够获得低分辨率(LR)源的高分辨率(HR)视频的高性能视频超分辨率(SR)技术。基于深度学习(DL)的SR方法可以提供具有明显的目标和主观品质的人力资源视频,而其大规模的计算复杂性使得即使在生产UHD视频时,即使在GPU服务器上也会比实时的处理速度慢。此外,在增强期间执行的转码和其他视频处理算法也是时间和资源消耗,其在普通CPU和GPU服务器上执行相对速度。如今,包括GPU,现场可编程门阵列(FPGA)和应用程序特定集成电路(ASIC)的硬件在不同方面的图像和视频处理任务中具有出色的能力,并且还有专用硬件加速器用于特定视频处理任务。在本文中,我们专注于加速多个硬件加速器的异构系统上的UHD视频增强工作流程。首先,我们优化最耗时的任务,视频SR,带有CUDNN和CUDA库,以实现普通GPU上的单个UHD输出帧的实时处理速度。其次,我们设计了一种用于数据和计算的GPU友好的多线程调度算法,以更好地利用GPU资源并在输出UHD视频剪辑时实现实时性能。三,针对生产环境,我们在所选异构硬件上建立UHD视频增强应用,具有我们所提出的算法的集成命令线工具,实现了60个FPS实时端到端处理速度。实验表明了我们的方法的高效率,稳健性和兼容性。

著录项

  • 来源
    《Journal of Real-Time Image Processing》 |2020年第6期|2029-2045|共17页
  • 作者单位

    Shanghai Jiao Tong Univ Inst Image Commun & Network Engn Shanghai Peoples R China;

    Shanghai Jiao Tong Univ Inst Image Commun & Network Engn Shanghai Peoples R China|Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China;

    Shanghai Jiao Tong Univ Inst Image Commun & Network Engn Shanghai Peoples R China;

    Shanghai Jiao Tong Univ Inst Image Commun & Network Engn Shanghai Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    UHD video; Super-resolution; Real-time; GPU;

    机译:UHD视频;超级分辨率;实时;GPU;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号